An optimized method for enrichment of whole brain-derived extracellular vesicles reveals insight into neurodegenerative processes in a mouse model of Alzheimer's disease.

神经科学 生物 阿尔茨海默病 疾病 神经炎症 细胞外小泡 海马体
作者
Stephanie N. Hurwitz,Li Sun,Kalonji Y. Cole,Charles R. Ford,James Olcese,David G. Meckes
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:307: 210-220 被引量:28
标识
DOI:10.1016/j.jneumeth.2018.05.022
摘要

Abstract Background Alzheimer’s disease (AD) is the major cause of dementia that has increased dramatically in prevalence over the past several decades. Yet many questions still surround the etiology of AD. Recently, extracellular vesicles (EVs) that transport protein, lipid, and nucleic acids from cell to cell have been implicated in the clearance and propagation of misfolded proteins. Investigation of EVs in AD progression, and their potential diagnostic utility may contribute to understanding and treating AD. However, the challenges of isolating brain-derived EVs have in part hindered these studies. New method Here, we provide an optimized method for the enrichment of brain-derived EVs by iodixanol floatation density gradient for mass spectrometry analysis. Results We demonstrate the isolation of these vesicles and the enrichment of EV proteins compared to sedimentation gradient isolation of vesicles. Moreover, comparative proteomic analysis of brain-derived EVs from healthy and AD mouse brains revealed differences in vesicular content including proteins involved in aging, immune response, and oxidation-reduction maintenance. These changes provide insight into AD-associated neurodegeneration and potential biomarkers of AD. Comparison with existing methods: Recent techniques have used sedimentation sucrose gradients to isolate EVs from brain tissue. However, here we demonstrate the advantages of floatation iodixanol density gradient isolation of small EVs, and provide evidence of EV enrichment by electron microscopy, immunoblot analysis, and quantitative mass spectrometry. Conclusions Together these findings offer a rigorous technique for enriching whole tissue-derived EVs for downstream analyses, and application of this approach to uncovering molecular changes in AD progression and other neurological conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑笑发布了新的文献求助10
刚刚
Rye227应助酸奶烤着吃采纳,获得10
1秒前
跳跃的惮完成签到,获得积分10
2秒前
2秒前
5秒前
执着怜珊完成签到 ,获得积分10
8秒前
难过的曼柔关注了科研通微信公众号
8秒前
9秒前
我是老大应助Kora采纳,获得200
9秒前
666完成签到,获得积分20
12秒前
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得20
16秒前
16秒前
我是老大应助小高同学采纳,获得10
20秒前
SciGPT应助虚拟的惜筠采纳,获得10
21秒前
21秒前
22秒前
欧阳娜娜完成签到,获得积分10
23秒前
24秒前
25秒前
所所应助zj采纳,获得10
25秒前
27秒前
pugss完成签到,获得积分10
28秒前
bird发布了新的文献求助10
28秒前
28秒前
热心馒头发布了新的文献求助10
30秒前
tpkkcdd完成签到,获得积分10
30秒前
昏睡的蟠桃给TrinhTran2001的求助进行了留言
31秒前
我是老大应助Steven采纳,获得10
32秒前
Rye227应助GongSyi采纳,获得20
35秒前
热心馒头完成签到,获得积分10
37秒前
39秒前
科研通AI2S应助yuqinghui98采纳,获得10
41秒前
zj发布了新的文献求助10
43秒前
归尘应助包宇采纳,获得10
43秒前
SCI发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385