亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conception of a touchless human machine interaction system for operating rooms using deep learning

计算机科学 人机交互 人际互动 深度学习 人工智能
作者
Mirko Scavazzin,Franck Valentini,Jean-Pierre Radoux,Florian Pereme,Jesus Zegarra
标识
DOI:10.1117/12.2319141
摘要

Touchless Human-Computer Interaction (HMI) is important in sterile environments, especially, in operating rooms (OR). Surgeons need to interact with images from scanners, rayon X, ultrasound images, etc. Problems about contamination may happen if surgeons must touch a keyboard or the mouse. To reduce the contamination and to give the possibility to the surgeon to be more autonomous during the operation, different projects have been developed in the Medic@ team from 2011. In order to recognize the hand and the gestures, two main projects: Gesture Tool Box and K2A; based on the use of the Kinect's device (with a depth camera) have been prototyped. The detection of the hand gesture was done by segmentation and hand descriptors on RGB images, but always with a dependency on the depth camera (Kinect) to the detection of the hand. Additionally, this approach does not give the possibility that the system adapts to a new gesture demanded by the end-user, for example, if a new gesture is demanded, a new algorithm must be programed and tested. Thanks to the evolution of NVDIA cards to reduce time processing algorithms for CNN, the last approach explored was the use of the deep learning algorithms. The Gesture tool box project done was to analyze the hand gesture detection using a CNN (pre-trained in VGG 16) and transfer learning. The results were very promising showing 85% of accuracy for the detection of 10 different gestures form LSF ( French Sign Language) and also it was possible to create a user interface to give autonomy to the end user to add his own gesture and to do the transfer learning automatically. However, we still had some problems about the real time delay (0,8s) recognition and the dependency of the Kinect device. In this article, a new architecture is proposed, in which we want to use standard cameras and to reduce the real time delay of the hand and gesture detection. The state of the art shows the use of a YOLOv2 using Darknet framework as a good option with faster time recognition compared to other CNN. We have implemented YOLOv2 for the detection of the hand and signs with good results in gesture detection and with 0.10 seconds on gesture time recognition in laboratory conditions. Future work will include reducing the errors of our model, recognizing intuitive and standard gestures and doing tests in real conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aaron完成签到 ,获得积分0
4秒前
hugeyoung发布了新的文献求助30
13秒前
科研通AI5应助zzb采纳,获得10
26秒前
35秒前
君寻完成签到 ,获得积分10
39秒前
zzb发布了新的文献求助10
41秒前
hugeyoung完成签到,获得积分10
41秒前
吱吱草莓派完成签到 ,获得积分10
57秒前
1分钟前
chenzy发布了新的文献求助10
1分钟前
Ivy应助勤奋白凝采纳,获得30
1分钟前
哈哈我完成签到,获得积分10
1分钟前
qiuyang完成签到 ,获得积分10
1分钟前
2分钟前
春衫发布了新的文献求助10
2分钟前
酷波er应助春衫采纳,获得30
2分钟前
3分钟前
3分钟前
Jasmine发布了新的文献求助10
3分钟前
牛八先生完成签到,获得积分10
3分钟前
77992完成签到 ,获得积分10
3分钟前
qwggg完成签到 ,获得积分10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
4分钟前
春衫发布了新的文献求助30
4分钟前
4分钟前
gentleman完成签到,获得积分10
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
今后应助CoCoco采纳,获得10
6分钟前
7分钟前
7分钟前
CoCoco发布了新的文献求助10
7分钟前
7分钟前
TEMPO发布了新的文献求助30
7分钟前
7分钟前
斐嘿嘿完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Rolo发布了新的文献求助10
7分钟前
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845519
求助须知:如何正确求助?哪些是违规求助? 3387795
关于积分的说明 10550589
捐赠科研通 3108429
什么是DOI,文献DOI怎么找? 1712776
邀请新用户注册赠送积分活动 824501
科研通“疑难数据库(出版商)”最低求助积分说明 774877