Clustering single-cell RNA-seq data with a model-based deep learning approach

聚类分析 计算机科学 可扩展性 数据挖掘 人工智能 特征(语言学) 样品(材料) 兰德指数 高维数据聚类 机器学习 模式识别(心理学) 语言学 色谱法 数据库 哲学 化学
作者
Tian Tian,Ji Wan,Qi Song,Zhi Wei
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:1 (4): 191-198 被引量:288
标识
DOI:10.1038/s42256-019-0037-0
摘要

Single-cell RNA sequencing (scRNA-seq) promises to provide higher resolution of cellular differences than bulk RNA sequencing. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive dropout events obscuring the data matrix with prevailing ‘false’ zero count observations. Here, we have developed scDeepCluster, a single-cell model-based deep embedded clustering method, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Based on testing extensive simulated data and real datasets from four representative single-cell sequencing platforms, scDeepCluster outperformed state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with sample size. Its accuracy and efficiency make scDeepCluster a promising algorithm for clustering large-scale scRNA-seq data. Clustering groups of cells in single-cell RNA sequencing datasets can produce high-resolution information for complex biological questions. However, it is statistically and computationally challenging due to the low RNA capture rate, which results in a high number of false zero count observations. A deep learning approach called scDeepCluster, which efficiently combines a model for explicitly characterizing missing values with clustering, shows high performance and improved scalability with a computing time increasing linearly with sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
777发布了新的文献求助10
3秒前
5秒前
李琦完成签到,获得积分10
5秒前
甘泊寓完成签到,获得积分10
8秒前
running发布了新的文献求助10
9秒前
沉默的谷秋完成签到,获得积分10
11秒前
无花果应助翁若翠采纳,获得10
11秒前
科研通AI5应助Nancy采纳,获得10
12秒前
13秒前
13秒前
14秒前
15秒前
16秒前
17秒前
17秒前
上官若男应助幽默山兰采纳,获得10
17秒前
zzzzzx发布了新的文献求助50
18秒前
18秒前
18秒前
小马完成签到 ,获得积分10
18秒前
Siyu完成签到 ,获得积分10
19秒前
zhongbo完成签到,获得积分10
20秒前
21秒前
LIJINGGE发布了新的文献求助10
22秒前
LIJINGGE发布了新的文献求助10
22秒前
LIJINGGE发布了新的文献求助10
22秒前
LIJINGGE发布了新的文献求助10
22秒前
bkagyin应助甘泊寓采纳,获得10
23秒前
24秒前
完美世界应助哈哈哈采纳,获得30
26秒前
45343发布了新的文献求助10
26秒前
想人陪的飞薇完成签到 ,获得积分10
27秒前
27秒前
running完成签到 ,获得积分20
30秒前
清脆安南完成签到 ,获得积分10
31秒前
33秒前
33秒前
36秒前
科研通AI2S应助xzy998采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324343
关于积分的说明 10218037
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758437