Development and Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs

医学 接收机工作特性 射线照相术 胸片 放射科 结核(地质) 算法 核医学 人工智能 内科学 计算机科学 生物 古生物学
作者
Ju Gang Nam,Sunggyun Park,Eui Jin Hwang,Jong Hyuk Lee,Kwang-Nam Jin,Kun Young Lim,Thienkai Huy Vu,Jae Ho Sohn,Sangheum Hwang,Jin Mo Goo,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (1): 218-228 被引量:471
标识
DOI:10.1148/radiol.2018180237
摘要

Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CY完成签到,获得积分10
刚刚
1秒前
Jianismye关注了科研通微信公众号
4秒前
lichun410932发布了新的文献求助10
5秒前
曹原阁发布了新的文献求助10
6秒前
7秒前
土豆玉米完成签到,获得积分20
8秒前
9秒前
淡然凝丹完成签到,获得积分10
11秒前
12秒前
12345678发布了新的文献求助10
12秒前
干雅柏完成签到,获得积分10
13秒前
雪流星完成签到,获得积分20
13秒前
rose完成签到,获得积分10
14秒前
炙热的寻菡完成签到,获得积分20
14秒前
干雅柏发布了新的文献求助10
15秒前
pentjy发布了新的文献求助10
17秒前
12345678完成签到,获得积分10
19秒前
wanci应助楚文强采纳,获得10
21秒前
豪子完成签到 ,获得积分10
23秒前
Rita发布了新的文献求助10
23秒前
科研搬运工完成签到,获得积分10
24秒前
i黄m完成签到,获得积分20
25秒前
26秒前
27秒前
李健应助温暖寻雪采纳,获得10
28秒前
円桑完成签到,获得积分10
31秒前
明明发布了新的文献求助10
32秒前
楚文强发布了新的文献求助10
32秒前
HaojunWang完成签到 ,获得积分10
33秒前
lemono_o完成签到,获得积分10
36秒前
36秒前
明明完成签到,获得积分20
37秒前
科研通AI2S应助m___采纳,获得20
37秒前
42秒前
44秒前
小果子发布了新的文献求助10
46秒前
曾曾发布了新的文献求助20
46秒前
乐乐应助CHENYAQIN采纳,获得10
47秒前
冷静的莞发布了新的文献求助30
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814481
求助须知:如何正确求助?哪些是违规求助? 3358577
关于积分的说明 10396143
捐赠科研通 3075886
什么是DOI,文献DOI怎么找? 1689593
邀请新用户注册赠送积分活动 813087
科研通“疑难数据库(出版商)”最低求助积分说明 767504