Development and Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs

医学 接收机工作特性 射线照相术 胸片 放射科 结核(地质) 算法 核医学 人工智能 内科学 计算机科学 生物 古生物学
作者
Ju Gang Nam,Sunggyun Park,Eui Jin Hwang,Jong Hyuk Lee,Kwang-Nam Jin,Kun Young Lim,Thienkai Huy Vu,Jae Ho Sohn,Sangheum Hwang,Jin Mo Goo,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (1): 218-228 被引量:471
标识
DOI:10.1148/radiol.2018180237
摘要

Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你怎么睡得着觉完成签到,获得积分10
刚刚
秋名山车神关注了科研通微信公众号
1秒前
1秒前
无花果应助风中忆枫采纳,获得10
1秒前
1秒前
1秒前
2秒前
liu完成签到,获得积分10
2秒前
一杯半茶发布了新的文献求助10
3秒前
tomorrow完成签到 ,获得积分10
3秒前
超级饼干发布了新的文献求助10
3秒前
4秒前
卷卷完成签到,获得积分10
4秒前
5秒前
ikouyo发布了新的文献求助10
5秒前
5秒前
zzz发布了新的文献求助20
5秒前
慕青应助LKF采纳,获得10
5秒前
5秒前
Anderson732发布了新的文献求助10
6秒前
6秒前
锅里有虾发布了新的文献求助10
6秒前
阔达千萍完成签到 ,获得积分10
6秒前
浮游应助YMW采纳,获得10
7秒前
天下无双完成签到,获得积分10
7秒前
7秒前
Xu发布了新的文献求助10
7秒前
薇薇发布了新的文献求助10
8秒前
8秒前
liumou发布了新的文献求助10
8秒前
8秒前
武雨寒发布了新的文献求助10
8秒前
9秒前
锦鲤完成签到,获得积分20
10秒前
10秒前
10秒前
阔达千萍关注了科研通微信公众号
10秒前
老实凝竹完成签到,获得积分10
10秒前
11秒前
future完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321446
求助须知:如何正确求助?哪些是违规求助? 4463163
关于积分的说明 13889191
捐赠科研通 4354367
什么是DOI,文献DOI怎么找? 2391707
邀请新用户注册赠送积分活动 1385278
关于科研通互助平台的介绍 1355062