Development and Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs

医学 接收机工作特性 射线照相术 胸片 放射科 结核(地质) 算法 核医学 人工智能 内科学 计算机科学 生物 古生物学
作者
Ju Gang Nam,Sunggyun Park,Eui Jin Hwang,Jong Hyuk Lee,Kwang-Nam Jin,Kun Young Lim,Thienkai Huy Vu,Jae Ho Sohn,Sangheum Hwang,Jin Mo Goo,Chang Min Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:290 (1): 218-228 被引量:471
标识
DOI:10.1148/radiol.2018180237
摘要

Purpose To develop and validate a deep learning-based automatic detection algorithm (DLAD) for malignant pulmonary nodules on chest radiographs and to compare its performance with physicians including thoracic radiologists. Materials and Methods For this retrospective study, DLAD was developed by using 43 292 chest radiographs (normal radiograph-to-nodule radiograph ratio, 34 067:9225) in 34 676 patients (healthy-to-nodule ratio, 30 784:3892; 19 230 men [mean age, 52.8 years; age range, 18-99 years]; 15 446 women [mean age, 52.3 years; age range, 18-98 years]) obtained between 2010 and 2015, which were labeled and partially annotated by 13 board-certified radiologists, in a convolutional neural network. Radiograph classification and nodule detection performances of DLAD were validated by using one internal and four external data sets from three South Korean hospitals and one U.S. hospital. For internal and external validation, radiograph classification and nodule detection performances of DLAD were evaluated by using the area under the receiver operating characteristic curve (AUROC) and jackknife alternative free-response receiver-operating characteristic (JAFROC) figure of merit (FOM), respectively. An observer performance test involving 18 physicians, including nine board-certified radiologists, was conducted by using one of the four external validation data sets. Performances of DLAD, physicians, and physicians assisted with DLAD were evaluated and compared. Results According to one internal and four external validation data sets, radiograph classification and nodule detection performances of DLAD were a range of 0.92-0.99 (AUROC) and 0.831-0.924 (JAFROC FOM), respectively. DLAD showed a higher AUROC and JAFROC FOM at the observer performance test than 17 of 18 and 15 of 18 physicians, respectively (P < .05), and all physicians showed improved nodule detection performances with DLAD (mean JAFROC FOM improvement, 0.043; range, 0.006-0.190; P < .05). Conclusion This deep learning-based automatic detection algorithm outperformed physicians in radiograph classification and nodule detection performance for malignant pulmonary nodules on chest radiographs, and it enhanced physicians' performances when used as a second reader. © RSNA, 2018 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萱萱发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
斯文败类应助枫叶的脚步采纳,获得10
4秒前
4秒前
jhlz5879完成签到,获得积分0
5秒前
852应助枫林醉采纳,获得10
8秒前
玖东发布了新的文献求助10
9秒前
9秒前
10秒前
allen7u完成签到,获得积分10
11秒前
小事发布了新的文献求助50
12秒前
13秒前
14秒前
FashionBoy应助微微采纳,获得10
14秒前
玖东完成签到,获得积分10
15秒前
175完成签到,获得积分20
16秒前
科研通AI5应助shuaxin456采纳,获得10
17秒前
20秒前
顺利的琳应助飞快的寒香采纳,获得10
20秒前
tang_c完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
25秒前
wmwm发布了新的文献求助20
27秒前
叶123完成签到,获得积分10
27秒前
微微完成签到,获得积分20
29秒前
31秒前
32秒前
32秒前
杨裕农完成签到,获得积分20
32秒前
娇气的觅儿完成签到,获得积分10
33秒前
33秒前
33秒前
微微发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助30
37秒前
39秒前
刘彤完成签到,获得积分10
41秒前
41秒前
42秒前
42秒前
大个应助jeronimo采纳,获得10
43秒前
情怀应助肝不动的牛马采纳,获得10
45秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212653
求助须知:如何正确求助?哪些是违规求助? 3746898
关于积分的说明 11789305
捐赠科研通 3414479
什么是DOI,文献DOI怎么找? 1873737
邀请新用户注册赠送积分活动 928097
科研通“疑难数据库(出版商)”最低求助积分说明 837403