生物膜
磺胺嘧啶
磺胺嘧啶银
化学
伤口愈合
微生物学
银纳米粒子
抗菌剂
抗生素
纳米颗粒
细菌
纳米技术
医学
生物
免疫学
材料科学
遗传学
作者
Krishna Kumar Patel,D. Bhavya Surekha,Muktanand Tripathi,Md Meraj Anjum,Madaswamy S. Muthu,Ragini Tilak,Ashish Kumar Agrawal,Sanjay Singh
标识
DOI:10.1021/acs.molpharmaceut.9b00527
摘要
Biofilm resistance is one of the severe complications associated with chronic wound infections, which impose extreme microbial tolerance against antibiotic therapy. Interestingly, deoxyribonuclease-I (DNase-I) has been empirically proved to be efficacious in improving the antibiotic susceptibility against biofilm-associated infections. DNase-I hydrolyzes the extracellular DNA, a key component of the biofilm responsible for the cell adhesion and strength. Moreover, silver sulfadiazine, a frontline therapy in burn wound infections, exhibits delayed wound healing due to fibroblast toxicity. In this study, a chitosan gel loaded with solid lipid nanoparticles of silver sulfadiazine (SSD-SLNs) and supplemented with DNase-I has been developed to reduce the fibroblast cytotoxicity and overcome the biofilm-imposed resistance. The extensive optimization using the Box-Behnken design (BBD) resulted in the formation of SSD-SLNs with a smooth surface as confirmed by scanning electron microscopy and controlled release (83%) for up to 24 h. The compatibility between the SSD and other formulation excipients was confirmed by Fourier transform infrared, differential scanning calorimetry, and powder X-ray diffraction studies. Developed SSD-SLNs in combination with DNase-I inhibited around 96.8% of biofilm of Pseudomonas aeruginosa as compared to SSD with DNase-I (82.9%). In line with our hypothesis, SSD-SLNs were found to be less toxic (cell viability 90.3 ± 3.8% at 100 μg/mL) in comparison with SSD (Cell viability 76.9 ± 4.2%) against human dermal fibroblast cell line. Eventually, the results of the in vivo wound healing study showed complete wound healing after 21 days' treatment with SSD-SLNs along with DNase-I, whereas marketed formulations SSD and SSD-LSNs showed incomplete healing after 21 days. Data in hand suggest that the combination of SSD-SLNs with DNase-I is an effective treatment strategy against the biofilm-associated wound infections and accelerates wound healing.
科研通智能强力驱动
Strongly Powered by AbleSci AI