随机森林
人工智能
分类器(UML)
排名(信息检索)
模式识别(心理学)
计算机科学
支持向量机
机器学习
高斯分布
数学
量子力学
物理
作者
Yuhu Cheng,Xue Qiao,Xuesong Wang,Qiang Yu
标识
DOI:10.1109/tnnls.2017.2677441
摘要
For the zero-shot image classification with relative attributes (RAs), the traditional method requires that not only all seen and unseen images obey Gaussian distribution, but also the classifications on testing samples are made by maximum likelihood estimation. We therefore propose a novel zero-shot image classifier called random forest based on relative attribute. First, based on the ordered and unordered pairs of images from the seen classes, the idea of ranking support vector machine is used to learn ranking functions for attributes. Then, according to the relative relationship between seen and unseen classes, the RA ranking-score model per attribute for each unseen image is built, where the appropriate seen classes are automatically selected to participate in the modeling process. In the third step, the random forest classifier is trained based on the RA ranking scores of attributes for all seen and unseen images. Finally, the class labels of testing images can be predicted via the trained RF. Experiments on Outdoor Scene Recognition, Pub Fig, and Shoes data sets show that our proposed method is superior to several state-of-the-art methods in terms of classification capability for zero-shot learning problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI