锆
无机化学
磷酸锆
吸附
氟
磷酸盐
多孔性
镧
水处理
化学
材料科学
化学工程
环境科学
有机化学
环境工程
工程类
作者
Dongxue Liu,Ye Li,Chang Liu,Bolin Li
标识
DOI:10.1016/j.jcis.2023.01.062
摘要
Bimetal oxide is a popular defluorinating material. Hexadecyl trimethyl ammonium bromide (CTAB) as a surfactant successfully synthesizes a novel lanthanum-zirconium phosphate to remove fluorine from groundwater. Lanthanum-zirconium phosphate at a Zr/La molar ratio of 2 exhibited a specific surface area of 455.14 m2/g with a wide pore size, which was achieved by incorporating lanthanum into materials and removing CTAB through calcination. The maximum fluoride adsorption capacity is 109.17 mg/g, which is tenfold that of mesostructured zirconium phosphate. Specifically, analysis revealed that mZrP and LamZrP2-1 were amorphous, which is consistent with HAADF-STEM. The fluoride adsorption fitted well with the pseudo-second-order equation model and Langmuir isotherm mode. LamZrP2-1 had potent anti-interference ability without PO43-. Moreover, LamZrP2-1 was reusable for at least six cycles of adsorption-desorption with little influence. The adsorption mechanism of fluoride was discussed by X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) analysis, and Fourier transform infrared (FTIR) spectroscopy. Fluoride was captured by LamZrP2-1 via charge attraction, ligand exchange of different bond strengths, and ion exchange. Lanthanum-zirconium phosphate is important not only in the research and development of bimetal oxides but also in the treatment of groundwater for fluoride removal.
科研通智能强力驱动
Strongly Powered by AbleSci AI