Modelling PM2.5 for Data-Scarce Zone of Northwestern India using Multi Linear Regression and Random Forest Approaches

随机森林 线性回归 地理 回归 贝叶斯多元线性回归 环境科学 统计 计算机科学 数学 机器学习
作者
Vipasha Sharma,Swagata Ghosh,Sagnik Dey,Sultan Singh
出处
期刊:Annals of GIS [Taylor & Francis]
卷期号:29 (3): 415-427 被引量:5
标识
DOI:10.1080/19475683.2023.2183523
摘要

PM2.5 (Particulate matter with aerodynamic diameter <2.5 m) concentrations above permissible limit causes air quality deterioration and hampers human health. Due to the lack of a good spatial network of ground-based PM monitoring sites and systematic checking, the availability of continuous data of PM2.5 concentrations at macro and meso scales is restricted. Present research estimated PM2.5 concentrations at high (1 km) resolution over Faridabad, Ghaziabad, Gurugram and Gautam Buddha Nagar, a data-scarce zone of the highly urbanized area of northwestern India for the year 2019 using Random Forest (RF), Multi-Linear Regression (MLR) models and Hybrid Model combining RF and MLR. It included Aerosol Optical Depth (AOD), meteorological data and limited in-situ data of PM2.5. For validation, the correlation coefficient (R), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE) and Relative Prediction Error (RPE) have been utilized. The hybrid model estimated PM2.5 with a greater correlation (R = 0.865) and smaller RPE (22.41%) compared to standalone MLR/RF models. Despite the inadequate in-situ data, Greater Noida has been found to have a high correlation (R = 0.933) and low RPE (32.13%) in the hybrid model. The most polluted seasons of the year are winter (137.28 µgm−3) and post-monsoon (112.93 µgm−3), whereas the wet monsoon (44.56 µgm−3) season is the cleanest. The highest PM2.5 level was recorded in Noida followed by Ghaziabad, Greater Noida and Faridabad. The findings of the present research will provide an input dataset for air pollution exposure risk research in parts of northwestern India with sparse monitoring data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饭饭发布了新的文献求助20
1秒前
LGJ完成签到,获得积分10
1秒前
圆脸萌妹sy完成签到,获得积分20
2秒前
文艺代灵完成签到,获得积分10
2秒前
兴奋曼香发布了新的文献求助10
2秒前
3秒前
SYLH应助kekao采纳,获得10
3秒前
老张完成签到,获得积分10
3秒前
长岛冰茶关注了科研通微信公众号
4秒前
迷路的清涟完成签到,获得积分10
5秒前
犹豫的忆枫完成签到,获得积分10
5秒前
绿绿完成签到,获得积分10
5秒前
销户完成签到 ,获得积分10
6秒前
tramp应助书晨采纳,获得10
6秒前
QX完成签到,获得积分10
6秒前
6秒前
8秒前
夕诙应助hyd1640采纳,获得200
8秒前
9Songs发布了新的文献求助10
9秒前
10秒前
星河在眼里完成签到,获得积分10
10秒前
吴博文发布了新的文献求助10
11秒前
谷粱诗云完成签到,获得积分10
11秒前
11秒前
Welunc完成签到,获得积分10
11秒前
12秒前
12秒前
hyd1640完成签到,获得积分10
12秒前
阔达迎夏完成签到 ,获得积分10
12秒前
三叶草完成签到,获得积分10
13秒前
gwh68964402gwh完成签到,获得积分10
14秒前
XD824发布了新的文献求助10
14秒前
自然的小熊猫完成签到 ,获得积分10
14秒前
西洲梦完成签到 ,获得积分10
15秒前
16秒前
活泼莫英完成签到,获得积分10
16秒前
温暖霸完成签到,获得积分10
16秒前
16秒前
17秒前
成年の童话完成签到,获得积分10
17秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816117
求助须知:如何正确求助?哪些是违规求助? 3359667
关于积分的说明 10403987
捐赠科研通 3077496
什么是DOI,文献DOI怎么找? 1690307
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781