Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network

计算机科学 图形 架空(工程) 交叉口(航空) 数据挖掘 数据聚合器 机器学习 智能交通系统 人工智能 理论计算机科学 计算机网络 无线传感器网络 操作系统 工程类 航空航天工程 土木工程
作者
Hanqiu Wang,Rongqing Zhang,Xiang Cheng,Liuqing Yang
标识
DOI:10.1109/wcsp55476.2022.10039323
摘要

In recent years, traffic flow prediction has attracted increasing interest from both academia and industry, and existing data-driven learning models for traffic flow prediction have achieved excellent success. However, this requires a large number of datasets for efficient model training, while it is difficult to acquire all the data from one agent, and thus data collaboration among different agents becomes an attracting trend. Moreover, with the increase in the number of agents, how to perform accurate multi-agent traffic forecasting while protecting privacy is an important issue. To address this challenge, we introduce a privacy-preserving federated learning framework. In this paper, we propose a novel Dynamic Spatio-Temporal traffic flow prediction model based on graph convolutional network (DST-GCN), which incorporates both dynamic spatial and temporal dependence of intersection traffic. In addition, we provide an improved federated learning framework with opportunistic client selection (FLoS). In the proposed FLoS protocol, we employ a FedAVG algorithm for secure parameter aggregation and design an optimal client selection algorithm to reduce the communication overhead during the transfer of model updates. Experiments based on real-world datasets demonstrate that our proposed DST-GCN traffic prediction model outperforms state-of-the-art baseline models. And our proposed FLoS can achieve superior results while reducing communication consumption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬应助Nancy采纳,获得30
1秒前
崩溃小魔仙完成签到,获得积分10
2秒前
2秒前
bibibi完成签到 ,获得积分10
2秒前
jxx完成签到 ,获得积分10
3秒前
共享精神应助Ciyuan采纳,获得10
3秒前
gkw发布了新的文献求助10
3秒前
hakunamatata完成签到 ,获得积分10
4秒前
西猫发布了新的文献求助10
6秒前
小呆毛完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
Xander完成签到,获得积分10
9秒前
可爱的函函应助西猫采纳,获得10
9秒前
10秒前
科研通AI6应助zhangheyi采纳,获得10
11秒前
大模型应助幸运星采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
顺利的琳应助科研通管家采纳,获得20
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
小二郎应助安静的孤萍采纳,获得10
13秒前
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得30
13秒前
子车茗应助科研通管家采纳,获得20
13秒前
13秒前
13秒前
13秒前
光电很亮完成签到,获得积分10
14秒前
14秒前
隐形曼青应助李kazuya采纳,获得10
14秒前
周二完成签到,获得积分10
14秒前
爆米花应助热吻街头采纳,获得10
14秒前
YYY完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
Orange应助kjy采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284808
求助须知:如何正确求助?哪些是违规求助? 3812236
关于积分的说明 11941497
捐赠科研通 3458793
什么是DOI,文献DOI怎么找? 1896885
邀请新用户注册赠送积分活动 945544
科研通“疑难数据库(出版商)”最低求助积分说明 849342