肺炎克雷伯菌
多粘菌素
多重耐药
克雷伯菌
微生物学
探索性分析
计算生物学
人工智能
抗生素
生物
计算机科学
遗传学
基因
大肠杆菌
数据科学
作者
Jing-Wen Lyu,Xue Di Zhang,Jia-Wei Tang,Yunhu Zhao,Su-Ling Liu,Yue Zhao,Ni Zhang,Dan Wang,Long Ye,Xiaoli Chen,Liang Wang,Bing Gu
标识
DOI:10.1128/spectrum.04126-22
摘要
This study focuses on the simultaneous discrimination and prediction of Klebsiella pneumoniae strains with carbapenem-sensitive, carbapenem-resistant, and polymyxin-resistant phenotypes. The implementation of CNN plus an attention mechanism makes the highest prediction accuracy at 99.46%, which confirms the diagnostic potential of the combination of SERS spectroscopy with the deep learning algorithm for antibacterial susceptibility testing in clinical settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI