亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep causal factorization network: A novel domain generalization method for cross-machine bearing fault diagnosis

计算机科学 人工智能 分类器(UML) 机器学习 因式分解 一般化 领域知识 模式识别(心理学) 数据挖掘 算法 数学 数学分析
作者
Sixiang Jia,Yongbo Li,Xinyue Wang,Dingyi Sun,Zichen Deng
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:192: 110228-110228 被引量:58
标识
DOI:10.1016/j.ymssp.2023.110228
摘要

Domain generalization (DG) has attracted much attention in bearing fault diagnosis since it can generalize the prior diagnostic knowledge to invisible working conditions. However, previous DG-based approaches are easy to introduce personalized bias due to the specificity of the mechanical equipment, which worsens the generalization performance. To solve this problem, a deep causal factorization network (DCFN) is proposed for cross-machine bearing diagnosis without the involvement of target domain data in training. Specifically, by leveraging the structural causal model of bearing fault signal generation, DCFN defines the cross-machine generalized fault representations as causal factors and the domain-related representations as non-causal factors. Afterwards, taking advantage of the causal properties that can be preserved in data distribution shifts, causal task factorization and feature factorization modules are designed to reconstruct causal mechanisms. To separate the two types of underlying factors, causal task factorization aims to maximize the predicted output entropy of the domain classifier using learned causal factors as input, and simultaneously maximizes the entropy of the fault classifier using learned non-causal factors as input. Moreover, causal feature factorization highlights that the ideal causal factors desire cross-domain consistency and inter-dimensional independence, thereby learning causal factors with stable and sufficient distinguishing features. Finally, under broad bearing fault datasets including public, laboratory and simulation datasets, the effectiveness of the proposed DCFN is verified by comparing with various state-of -the-arts diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tushar完成签到,获得积分10
6秒前
NaCl完成签到 ,获得积分10
41秒前
42秒前
英姑应助andrele采纳,获得10
49秒前
影月完成签到,获得积分10
50秒前
1分钟前
娃哈哈完成签到 ,获得积分20
1分钟前
li完成签到,获得积分10
1分钟前
小马甲应助哆啦猫采纳,获得10
1分钟前
1分钟前
CipherSage应助SandyDai采纳,获得10
1分钟前
1分钟前
哆啦猫发布了新的文献求助10
1分钟前
追寻的纸鹤完成签到 ,获得积分10
1分钟前
liwang9301完成签到,获得积分10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
核桃应助科研通管家采纳,获得10
1分钟前
swb发布了新的文献求助80
1分钟前
1分钟前
lyp完成签到 ,获得积分10
1分钟前
赵三岁完成签到,获得积分10
1分钟前
xc发布了新的文献求助10
1分钟前
天天快乐应助swb采纳,获得10
1分钟前
2分钟前
zoezoezoe发布了新的文献求助10
2分钟前
化龙完成签到,获得积分10
2分钟前
脑洞疼应助zoezoezoe采纳,获得10
2分钟前
2分钟前
云泥发布了新的文献求助10
2分钟前
2分钟前
3分钟前
cjh发布了新的文献求助10
3分钟前
Ranran完成签到 ,获得积分10
3分钟前
万物安生完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
今后应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
3分钟前
大闲鱼铭一完成签到 ,获得积分10
3分钟前
高分求助中
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098947
求助须知:如何正确求助?哪些是违规求助? 3636519
关于积分的说明 11525626
捐赠科研通 3346364
什么是DOI,文献DOI怎么找? 1839158
邀请新用户注册赠送积分活动 906496
科研通“疑难数据库(出版商)”最低求助积分说明 823819