DFD-SS: Document Forgery Detection using Spectral – Spatial Features for Hyperspectral Images

高光谱成像 人工智能 模式识别(心理学) 计算机科学 自编码 特征提取 冗余(工程) 光谱带 特征(语言学) 光谱特征 深度学习 主成分分析 计算机视觉 遥感 地质学 语言学 哲学 操作系统
作者
Garima Jaiswal,Arun Sharma,Sumit Yadav
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier BV]
卷期号:89: 103690-103690 被引量:7
标识
DOI:10.1016/j.jvcir.2022.103690
摘要

In the present era of machines and edge-cutting technologies, still document frauds persist. They are done intuitively by using almost identical inks, that it becomes challenging to detect them—this demands an approach that efficiently investigates the document and leaves it intact. Hyperspectral imaging is one such a type of approach that captures the images from hundreds to thousands of spectral bands and analyzes the images through their spectral and spatial features, which is not possible by conventional imaging. Deep learning is an edge-cutting technology known for solving critical problems in various domains. Utilizing supervised learning imposes constraints on its usage in real scenarios, as the inks used in forgery are not known prior. Therefore, it is beneficial to use unsupervised learning. An unsupervised feature extraction through a Convolutional Autoencoder (CAE) followed by Logistic Regression (LR) for classification is proposed (CAE-LR). Feature extraction is evolved around spectral bands, spatial patches, and spectral-spatial patches. We inspected the impact of spectral, spatial, and spectral-spatial features by mixing inks in equal and unequal proportion using CAE-LR on the UWA writing ink hyperspectral images dataset for blue and black inks. Hyperspectral images are captured at multiple correlated spectral bands, resulting in information redundancy handled by restoring certain principal components. The proposed approach is compared with eight state-of-art approaches used by the researchers. The results depicted that by using the combination of spectral and spatial patches, the classification accuracy enhanced by 4.85% for black inks and 0.13% for blue inks compared to state-of-art results. In the present scenario, the primary area concern is to identify and detect the almost similar inks used in document forgery, are efficiently managed by the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助细节拉满采纳,获得10
1秒前
失眠呆呆鱼完成签到 ,获得积分10
2秒前
MewZero关注了科研通微信公众号
2秒前
2秒前
zyc完成签到,获得积分10
4秒前
传奇3应助gy采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
cdercder应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
可爱的函函应助MurrayQ采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
王博士发布了新的文献求助10
9秒前
9秒前
14秒前
倔强的大萝卜完成签到 ,获得积分0
17秒前
可爱小哪吒完成签到,获得积分10
17秒前
小二郎应助周周采纳,获得10
18秒前
快乐的若灵完成签到 ,获得积分10
18秒前
刻苦的溪流完成签到,获得积分10
20秒前
所所应助WN采纳,获得10
24秒前
NIUB完成签到,获得积分10
24秒前
骆驼刺发布了新的文献求助20
25秒前
深情安青应助木南采纳,获得10
25秒前
微笑的冰烟应助张可采纳,获得10
26秒前
Shaangueuropa发布了新的文献求助30
26秒前
Clara凤发布了新的文献求助10
30秒前
31秒前
木南完成签到,获得积分10
31秒前
欢呼的凌兰完成签到,获得积分10
32秒前
明理的延恶完成签到 ,获得积分10
33秒前
shweah2003完成签到,获得积分10
34秒前
34秒前
秋澄完成签到 ,获得积分10
36秒前
xiaona完成签到,获得积分10
36秒前
37秒前
所所应助从容以山采纳,获得10
37秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816980
求助须知:如何正确求助?哪些是违规求助? 3360427
关于积分的说明 10407756
捐赠科研通 3078348
什么是DOI,文献DOI怎么找? 1690731
邀请新用户注册赠送积分活动 814032
科研通“疑难数据库(出版商)”最低求助积分说明 767985