清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Autoencoder Neural Network-Based STAP Algorithm for Airborne Radar with Inadequate Training Samples

杂乱 自编码 雷达 协方差矩阵 计算机科学 空时自适应处理 维数(图论) 算法 人工智能 人工神经网络 基质(化学分析) 趋同(经济学) 噪音(视频) 模式识别(心理学) 机器学习 数学 雷达工程细节 雷达成像 电信 图像(数学) 复合材料 经济 经济增长 材料科学 纯数学
作者
Jing Liu,Guisheng Liao,Jingwei Xu,Shengqi Zhu,Filbert H. Juwono,Cao Zeng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (23): 6021-6021 被引量:3
标识
DOI:10.3390/rs14236021
摘要

Clutter suppression is a key problem for airborne radar, and space-time adaptive processing (STAP) is a core technology for clutter suppression and moving target detection. However, in practical applications, the non-uniform time-varying environments including clutter range dependence for non-side-looking radar lead to the training samples being unable to satisfy the sample requirements of STAP that they should be independent identical distributed (IID) and that their number should be greater than twice the system’s degree of freedom (DOF). The lack of sufficient IID training samples causes difficulty in the convergence of STAP and further results in a serious degeneration of performance. To overcome this problem, this paper proposes a novel autoencoder neural network for clutter suppression with a unique matrix designed to be decoded and encoded. The main challenges are improving the accuracy of the estimation of the clutter-plus-noise covariance matrix (CNCM) for STAP convergence, designing the form of the data input to the network, and making the network successfully explored to the improvement of CNCM. For these challenges, the main proposed solutions include designing a unique matrix with a certain dimension and a series of covariance data selections and matrix transformations. Consequently, the proposed method compresses and retains the characteristics of the covariances, and abandons the deviations caused by the non-uniformity and the deficiency of training samples. Specifically, the proposed method firstly develops a unique matrix whose dimension is less than half of the DOF, meanwhile, it is based on a processing of the selected clutter-plus-noise covariances. Then, an autoencoder neural network with l2 regularization and the sparsity regularization is proposed for the unique matrix to be decoded and encoded. The training of the proposed autoencoder can be achieved by reducing the total loss function with the gradient descent iterations. Finally, an inverted processing for the autoencoder output is designed for the reconstruct ion of the clutter-plus-noise covariances. Simulation results are used to verify the effectiveness and advantages of the proposed method. It performs obviously superior clutter suppression for both side-looking and non-side-looking radars with strong clutter, and can deal with the insufficient and the non-uniform training samples. For these conditions, the proposed method provides the relatively narrowest and deepest IF notch. Furthermore, on average it improves the improvement factor (IF) by 10 dB more than the ADC, DW, JDL, and original STAP methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小平发布了新的文献求助10
8秒前
poki完成签到 ,获得积分10
23秒前
小平完成签到,获得积分10
23秒前
42秒前
张国麒完成签到 ,获得积分10
1分钟前
萧奕尘完成签到,获得积分10
1分钟前
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
muriel完成签到,获得积分10
2分钟前
xingsixs完成签到 ,获得积分10
2分钟前
3分钟前
orixero应助Caleb采纳,获得10
3分钟前
李健的小迷弟应助lanbing802采纳,获得10
3分钟前
爱听歌的大地完成签到 ,获得积分10
3分钟前
lanbing802完成签到,获得积分10
3分钟前
秋天好完成签到,获得积分10
3分钟前
4分钟前
小蘑菇应助Grace0621采纳,获得10
4分钟前
Caleb发布了新的文献求助10
4分钟前
Eric800824完成签到 ,获得积分10
4分钟前
4分钟前
Grace0621发布了新的文献求助10
4分钟前
桐桐应助Grace0621采纳,获得10
4分钟前
翻译度完成签到,获得积分10
4分钟前
5分钟前
WenJun完成签到,获得积分10
5分钟前
xuehy128发布了新的文献求助10
5分钟前
Glitter完成签到 ,获得积分10
5分钟前
kd1412完成签到 ,获得积分10
5分钟前
科研通AI5应助姜生在树上采纳,获得10
6分钟前
Demi_Ming完成签到,获得积分10
6分钟前
紫熊发布了新的文献求助10
6分钟前
DrKe完成签到,获得积分10
6分钟前
科研通AI5应助Archie采纳,获得10
7分钟前
7分钟前
Archie发布了新的文献求助10
7分钟前
紫熊完成签到,获得积分10
7分钟前
Archie完成签到,获得积分10
7分钟前
Iris一定行应助mcl采纳,获得50
7分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702226
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101