材料科学
随机性
聚合物
复合数
纳米技术
纳米颗粒
复合材料
数学
统计
作者
Duong Nguyen Minh,Lan Anh Thi Nguyen,Quynh H. Nguyen,Thanh Van Vu,Jin‐Woo Choi,Sangwon Eom,Seok Joon Kwon,Youngjong Kang
标识
DOI:10.1002/adma.202208151
摘要
Physical entities with inherent randomness have been investigated as anti-counterfeiting labels based on physical unclonable functions (PUFs). Herein, a transparent and flexible optical PUF label associated with multilevel complexity is demonstrated by taking advantage of the optical properties of hierarchical morphologies of the composite film composed of metal halide perovskite nanoparticles (MAPbBr3 NPs) and the intrinsic spinodal-decomposition-like phase separation of polymer blend (PMMA/PS blend). Due to the combinatorial effects of the photolysis synthesis of MAPbBr3 and the thermodynamic instability of the PMMA/PS blend, randomized patterns emerge at two-level scales. These patterns are intrinsically non-deterministic, and therefore, the PUF labels from the multilevel random patterns are challenging to replicate. This is mainly attributed to random spot patterns (higher-level patterns) confined within intricate bicontinuous patterns (lower-level patterns).
科研通智能强力驱动
Strongly Powered by AbleSci AI