光子上转换
荧光粉
温度计
化学
激光器
灵敏度(控制系统)
分析化学(期刊)
激发
光电子学
微电子
温度测量
光学
发光
材料科学
电气工程
物理
量子力学
工程类
色谱法
电子工程
作者
Jingjing Tang,Yujian Wu,Minkun Jin,YueXin Li,Changheng Chen,Jinmeng Xiang,Chongfeng Guo
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2022-11-25
卷期号:61 (49): 20035-20042
被引量:23
标识
DOI:10.1021/acs.inorgchem.2c03379
摘要
Based on luminescence intensity ratio (LIR) technology, the noncontact upconversion (UC) optical temperature sensor has aroused a great deal of interest due to its great application prospects in some extreme environments. However, most of the studies focused on improving its sensitivity due to the fact that the sensitivity can be influenced by many external field factors, such as the power density and pulse width of pumping sources or temperature. Herein, a green-emitting UC phosphor Sr2InF7: Yb3+, Er3+ was developed as a potential thermometer, which retained bright green emission under 980 nm excitation with different pulse widths and power densities or at different temperatures; the possible mechanisms are discussed in detail. Its sensitivity almost remained constant when using both continuous wave (c.w.) and pulsed laser or different power densities, which meant the sensitivity of Sr2InF7: Yb3+, Er3+ was independent of the characteristics of pumping laser. A flexible thin-film thermometer composed of Sr2InF7: 2%Yb3+, 2%Er3+ was also fabricated to detect the temperature of microelectronic components, which can not only accurately measure the temperature of the working electronic circuit board but also exhibit excellent repeatability. The results indicated that the present noncontact UC temperature sensor showed stable green emission and thermometric sensitivity as well as the possibility of replacing the traditional thermometers.
科研通智能强力驱动
Strongly Powered by AbleSci AI