A novel hybrid deep network for diagnosing water status in wheat crop using IoT-based multimodal data

RGB颜色模型 计算机科学 卷积神经网络 色调 人工智能 深度学习 精准农业 灰度 遥感 农业工程 计算机视觉 像素 工程类 农业 生物 地质学 生态学
作者
Osama Elsherbiny,Lei Zhou,Yong He,Zhengjun Qiu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:203: 107453-107453 被引量:12
标识
DOI:10.1016/j.compag.2022.107453
摘要

Automatic detection of plant water status is a significant challenge in agriculture as it is a crucial regulator of growth, productivity, quality, and sustainability. As a result, accurate monitoring of the plant's water condition has become imperative. Internet of Things (IoT) solutions based on specific sensor data acquisition and intelligent processing can assist water users for precise irrigation by providing accurate, consistent, and fast results. This paper aims to present a hybrid deep learning approach based on the combination of a convolutional neural network (CNN) and long short-term memory (LSTM) for automatically identifying the water state of wheat. The intended scheme used IoT-based data transmission devices such as a digital camera, soil moisture, wind speed, air temperature, and relative humidity. These environmental factors (EF) were recorded during the plant image capture. A total of 876 images of wheat plants were collected under different water deficit levels. A data augmentation approach was applied to expand the size of the training dataset to 5256 images. Various types of image color modes for example CMYK (cyan-magenta-yellow-black), HSV (hue-saturation-value), RGB (red-greenblue), and grayscale were evaluated with our proposed methods. The experimental results indicated that the combined CNNRGB-LSTMEF-CNNEF deep network based on features from both RGB images, climatic conditions, and soil moisture performed better than features from individual RGB images. Its outputs of validation accuracy, classification precision, recall, F-measure, and intersection over union are 100% with a loss of 0.0012. The proposed system behavior is very encouraging to develop our methodology with other crops in the future. The designed framework can serve the agricultural community to detect the water stress of plants before the critical level of growth and make timely management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三石完成签到 ,获得积分10
1秒前
科研通AI2S应助12umi采纳,获得10
2秒前
楼一笑发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
hanhan发布了新的文献求助10
5秒前
芝士土豆泥完成签到,获得积分10
6秒前
1111完成签到,获得积分10
6秒前
7秒前
111发布了新的文献求助10
8秒前
qwdg发布了新的文献求助10
8秒前
白糖完成签到,获得积分10
8秒前
李健应助mimi采纳,获得30
9秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
整齐千柳发布了新的文献求助10
12秒前
12umi发布了新的文献求助10
12秒前
绿绿发布了新的文献求助10
13秒前
14秒前
开心幻巧完成签到,获得积分10
15秒前
15秒前
就不吃菜菜完成签到,获得积分10
15秒前
VENTUS发布了新的文献求助10
15秒前
15秒前
Lucas应助整齐千柳采纳,获得10
16秒前
科研通AI5应助Miya_han采纳,获得100
16秒前
17秒前
完美世界应助yb采纳,获得10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802485
求助须知:如何正确求助?哪些是违规求助? 3348111
关于积分的说明 10336668
捐赠科研通 3064039
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997