Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids

纳米技术 3D生物打印 计算机科学 生物加工 组织工程 再生医学 干细胞 生物 工程类 生物医学工程 细胞生物学 材料科学
作者
Mojtaba Farahani,James Carthew,Sanchyan Bhowmik,Chloé Shard,Ana Beatriz Nunez-Nescolarde,Guillermo A. Gómez,Víctor J. Cadarso,Alexander N. Combes,Jessica E. Frith
出处
期刊:Biointerphases [American Institute of Physics]
卷期号:17 (6) 被引量:1
标识
DOI:10.1116/6.0002034
摘要

The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shawn发布了新的文献求助10
1秒前
李玟完成签到,获得积分10
2秒前
centlay应助iwdg采纳,获得30
2秒前
Lucas应助crazydick采纳,获得10
3秒前
5秒前
oneday发布了新的文献求助50
6秒前
9秒前
等待雅柏发布了新的文献求助10
10秒前
10秒前
13秒前
稳重的烙完成签到 ,获得积分10
13秒前
爽爽完成签到 ,获得积分10
13秒前
沉梦昂志_hzy完成签到,获得积分10
16秒前
17秒前
Holly完成签到,获得积分10
17秒前
Shirly驳回了田様应助
18秒前
魔幻凝云发布了新的文献求助10
19秒前
淡淡灵珊发布了新的文献求助30
19秒前
20秒前
20秒前
24秒前
25秒前
crazydick发布了新的文献求助10
27秒前
优美的南霜完成签到,获得积分10
27秒前
一位勤奋好学的韩女士完成签到,获得积分10
32秒前
小何完成签到,获得积分10
36秒前
zhanghandi发布了新的文献求助10
37秒前
武雨寒发布了新的文献求助10
41秒前
wbgwudi发布了新的文献求助10
42秒前
感动白开水完成签到,获得积分10
45秒前
lp1108发布了新的文献求助10
46秒前
46秒前
49秒前
wbgwudi完成签到,获得积分10
50秒前
Jiayee发布了新的文献求助10
51秒前
53秒前
悠悠完成签到 ,获得积分10
58秒前
58秒前
景代丝完成签到,获得积分10
1分钟前
Mr.Quinn发布了新的文献求助10
1分钟前
高分求助中
Formgebungs- und Stabilisierungsparameter für das Konstruktionsverfahren der FiDU-Freien Innendruckumformung von Blech 1000
The Illustrated History of Gymnastics 800
Division and square root. Digit-recurrence algorithms and implementations 500
The role of a multidrug-resistance gene (lemdrl) in conferring vinblastine resistance in Leishmania enriettii 310
Elgar Encyclopedia of Consumer Behavior 300
機能營養學前瞻(3 Ed.) 300
Improving the ductility and toughness of Fe-Cr-B cast irons 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2510900
求助须知:如何正确求助?哪些是违规求助? 2160095
关于积分的说明 5531243
捐赠科研通 1880485
什么是DOI,文献DOI怎么找? 935798
版权声明 564240
科研通“疑难数据库(出版商)”最低求助积分说明 499642