The implication of oversampling on the effectiveness of force signals in the fault detection of endodontic instruments during RCT

人工智能 机器学习 过采样 计算机科学 决策树 过度拟合 朴素贝叶斯分类器 数据挖掘 模式识别(心理学) 支持向量机 人工神经网络 带宽(计算) 计算机网络
作者
Vinod Singh Thakur,Pavan Kumar Kankar,Anand Parey,Arpit Jain,Prashant K. Jain
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE Publishing]
卷期号:237 (8): 958-974 被引量:1
标识
DOI:10.1177/09544119231186074
摘要

This work provides an innovative endodontic instrument fault detection methodology during root canal treatment (RCT). Sometimes, an endodontic instrument is prone to fracture from the tip, for causes uncertain the dentist's control. A comprehensive assessment and decision support system for an endodontist may avoid several breakages. This research proposes a machine learning and artificial intelligence-based approach that can help to diagnose instrument health. During the RCT, force signals are recorded using a dynamometer. From the acquired signals, statistical features are extracted. Because there are fewer instances of the minority class (i.e. faulty/moderate class), oversampling of datasets is required to avoid bias and overfitting. Therefore, the synthetic minority oversampling technique (SMOTE) is employed to increase the minority class. Further, evaluating the performance using the machine learning techniques, namely Gaussian Naïve Bayes (GNB), quadratic support vector machine (QSVM), fine k-nearest neighbor (FKNN), and ensemble bagged tree (EBT). The EBT model provides excellent performance relative to the GNB, QSVM, and FKNN. Machine learning (ML) algorithms can accurately detect endodontic instruments' faults by monitoring the force signals. The EBT and FKNN classifier is trained exceptionally well with an area under curve values of 1.0 and 0.99 and prediction accuracy of 98.95 and 97.56%, respectively. ML can potentially enhance clinical outcomes, boost learning, decrease process malfunctions, increase treatment efficacy, and enhance instrument performance, contributing to superior RCT processes. This work uses ML methodologies for fault detection of endodontic instruments, providing practitioners with an adequate decision support system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
001发布了新的文献求助10
1秒前
1秒前
种下梧桐树完成签到 ,获得积分10
1秒前
共享精神应助默默采纳,获得30
2秒前
研友_nv4Bx8完成签到,获得积分10
2秒前
脆脆发布了新的文献求助10
3秒前
赘婿应助hxm采纳,获得10
4秒前
krislan完成签到,获得积分10
4秒前
4秒前
4秒前
加了个浩完成签到,获得积分10
4秒前
5秒前
Hello应助安静的幼旋采纳,获得10
5秒前
5秒前
6秒前
为了文献可以当牛做马完成签到,获得积分10
6秒前
6秒前
可乐发布了新的文献求助10
7秒前
7秒前
bbb发布了新的文献求助10
8秒前
完美世界应助倩青春采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
乐观城发布了新的文献求助10
8秒前
充电宝应助gyhmm采纳,获得10
9秒前
NexusExplorer应助wandaiji采纳,获得10
9秒前
和谐断天完成签到,获得积分20
9秒前
图图发布了新的文献求助20
10秒前
H华ua应助SQ采纳,获得30
10秒前
123发布了新的文献求助10
11秒前
Lun伦完成签到,获得积分10
11秒前
英姑应助杨小小小主采纳,获得10
11秒前
萌萌完成签到,获得积分10
12秒前
12秒前
和谐断天发布了新的文献求助10
13秒前
orixero应助Jeffery采纳,获得30
13秒前
蓝天应助story采纳,获得10
14秒前
CUGjy发布了新的文献求助10
14秒前
平凡的七月完成签到,获得积分10
15秒前
馆长举报三国杀老刘求助涉嫌违规
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4664774
求助须知:如何正确求助?哪些是违规求助? 4046222
关于积分的说明 12514962
捐赠科研通 3738630
什么是DOI,文献DOI怎么找? 2064755
邀请新用户注册赠送积分活动 1094249
科研通“疑难数据库(出版商)”最低求助积分说明 974701