The implication of oversampling on the effectiveness of force signals in the fault detection of endodontic instruments during RCT

人工智能 机器学习 过采样 计算机科学 决策树 过度拟合 朴素贝叶斯分类器 数据挖掘 模式识别(心理学) 支持向量机 人工神经网络 带宽(计算) 计算机网络
作者
Vinod Singh Thakur,Pavan Kumar Kankar,Anand Parey,Arpit Jain,Prashant K. Jain
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE Publishing]
卷期号:237 (8): 958-974 被引量:1
标识
DOI:10.1177/09544119231186074
摘要

This work provides an innovative endodontic instrument fault detection methodology during root canal treatment (RCT). Sometimes, an endodontic instrument is prone to fracture from the tip, for causes uncertain the dentist's control. A comprehensive assessment and decision support system for an endodontist may avoid several breakages. This research proposes a machine learning and artificial intelligence-based approach that can help to diagnose instrument health. During the RCT, force signals are recorded using a dynamometer. From the acquired signals, statistical features are extracted. Because there are fewer instances of the minority class (i.e. faulty/moderate class), oversampling of datasets is required to avoid bias and overfitting. Therefore, the synthetic minority oversampling technique (SMOTE) is employed to increase the minority class. Further, evaluating the performance using the machine learning techniques, namely Gaussian Naïve Bayes (GNB), quadratic support vector machine (QSVM), fine k-nearest neighbor (FKNN), and ensemble bagged tree (EBT). The EBT model provides excellent performance relative to the GNB, QSVM, and FKNN. Machine learning (ML) algorithms can accurately detect endodontic instruments' faults by monitoring the force signals. The EBT and FKNN classifier is trained exceptionally well with an area under curve values of 1.0 and 0.99 and prediction accuracy of 98.95 and 97.56%, respectively. ML can potentially enhance clinical outcomes, boost learning, decrease process malfunctions, increase treatment efficacy, and enhance instrument performance, contributing to superior RCT processes. This work uses ML methodologies for fault detection of endodontic instruments, providing practitioners with an adequate decision support system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿南发布了新的文献求助10
1秒前
1秒前
Rain发布了新的文献求助10
2秒前
4秒前
斯文败类应助qinqin采纳,获得10
5秒前
酷波er应助Green采纳,获得10
5秒前
wh发布了新的文献求助10
5秒前
Akim应助nnn采纳,获得10
5秒前
Erich完成签到 ,获得积分10
5秒前
Yan完成签到,获得积分10
6秒前
在水一方应助Rain采纳,获得10
6秒前
guaishou发布了新的文献求助10
7秒前
YY发布了新的文献求助10
8秒前
木南发布了新的文献求助10
8秒前
秋叶完成签到,获得积分10
9秒前
illusion2019应助jj158采纳,获得50
9秒前
传奇3应助难过的冬云采纳,获得10
10秒前
11秒前
14秒前
xing525888完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
Yan发布了新的文献求助10
15秒前
15秒前
15秒前
艺术家发布了新的文献求助10
16秒前
zyk发布了新的文献求助10
16秒前
李健的小迷弟应助satchzhao采纳,获得10
18秒前
nnn发布了新的文献求助10
18秒前
自信项链发布了新的文献求助10
19秒前
qinqin发布了新的文献求助10
19秒前
lizhiqian2024发布了新的文献求助10
20秒前
Kate发布了新的文献求助30
20秒前
21秒前
23秒前
Fqdgest发布了新的文献求助10
25秒前
26秒前
随遇而安应助nnn采纳,获得10
26秒前
华仔应助安详凡采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792