Building Extraction From High Spatial Resolution Remote Sensing Images of Complex Scenes by Combining Region-Line Feature Fusion and OCNN

计算机科学 人工智能 特征提取 图像分割 卷积神经网络 分割 计算机视觉 模式识别(心理学) 边缘检测 遥感 图像处理 图像(数学) 地理
作者
Dehui Dong,Dongping Ming,Qihao Weng,Yi Yang,Kun Fang,Lu Xu,Tongyao Du,Yu Zhang,Ran Liu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 4423-4438 被引量:12
标识
DOI:10.1109/jstars.2023.3273726
摘要

Building extraction from remote sensing imagery has been a research hotspot for some time with the advancement of AI in remote sensing. However, the edges of buildings extracted using existing techniques are commonly broken and inaccurate for the complex scenes in suburban and rural areas. This study proposes a framework for extracting structures by combining region-line feature fusion with object-based convolutional neural networks to solve this problem. First, a building edge detection network known as the Multichannel Attention-based Dense Extreme Inception Network for Edge Detection (MA-DexiNed) is constructed, which is considered more accurate for building edge extraction in complicated image scenes. Second, the probability map of the building edges obtained by MA-DexiNed is refined. According to rule judgment, breakpoints are linked by an edge thinning connection algorithm to obtain single-pixel, contiguous building line features. Third, the geometric boundaries of buildings are obtained by combining region attributes derived by unsupervised image segmentation and line features obtained from deep learning supervised segmentation. Finally, the pretrained AlexNet is employed to identify the class characteristics of buildings. The suggested framework was used for two GF-2 images and one Google Earth image from various regions and with numerous types of complicated scenes. The experimental findings demonstrated that this approach could extract more precise and complete building edges for complex image scenes compared with several existing methods. This advancement results from constrained regional image segmentation using deep semantic edge features. This methodology can offer a benchmark for subsequent building extraction tasks from high resolution imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任润发布了新的文献求助10
2秒前
shihui发布了新的文献求助10
4秒前
4秒前
P16完成签到,获得积分10
4秒前
一丁雨完成签到,获得积分10
4秒前
MinQi完成签到,获得积分10
4秒前
1234发布了新的文献求助10
5秒前
科研通AI6应助Zz采纳,获得10
5秒前
天天快乐应助HHHHTTTT采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
核桃应助科研通管家采纳,获得10
5秒前
leaolf应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
不安青牛应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
不安青牛应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
唐泽雪穗应助科研通管家采纳,获得10
6秒前
核桃应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
不安青牛应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
唐泽雪穗应助科研通管家采纳,获得10
6秒前
闻闻完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
呆萌的丑完成签到,获得积分10
7秒前
坦率灵槐应助缓慢雅青采纳,获得10
7秒前
科研通AI2S应助lx1a0采纳,获得10
8秒前
科研通AI6应助Zoe采纳,获得10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140