A Transformer-Based Multi-Task Learning Framework for Myoelectric Pattern Recognition Supporting Muscle Force Estimation

计算机科学 变压器 手势 模式识别(心理学) 人工智能 语音识别 手势识别 肌电图 工程类 物理医学与康复 电压 医学 电气工程
作者
Xinhui Li,Xu Zhang,Liwei Zhang,Xiang Chen,Ping Zhou
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 3255-3264 被引量:9
标识
DOI:10.1109/tnsre.2023.3298797
摘要

Simultaneous implementation of myoelectric pattern recognition and muscle force estimation is highly demanded in building natural gestural interfaces but a challenging task due to the gesture classification accuracy degradation under varying muscle strengths. To address this problem, a novel method using transformer-based multi-task learning (MTL-Transformer) for the prediction of both myoelectric patterns and corresponding muscle strengths was proposed to describe the inherent characteristics of an individual gesture pattern under different force conditions, thereby improving the accuracy of myoelectric pattern recognition. In addition, the transformer model enabled the characterization of long-term temporal correlations to ensure precise and smooth estimation of the muscle force. The performance of the proposed MTL-Transformer framework was evaluated via experiments of classifying eleven hand gestures and estimating the corresponding muscle force simultaneously, using high-density surface electromyogram (HD-sEMG) recordings from forearm flexor muscles of eleven intact-limbed subjects. The MTL-Transformer framework yielded high classification accuracy (98.70±1.21%) and low root mean square deviation (12.59±2.76%), and outperformed other two common temporally modelling methods significantly ( ) in terms of both improved gesture recognition accuracies and reduced muscle force estimation errors. The MTL-Transformer framework is demonstrated as an effective solution for simultaneous implementation of myoelectric pattern recognition and muscle force estimation. This study promotes the development of robust and smooth myoelectric control systems, with wide applications in gestural interfaces, prosthetic and orthotic control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助ller采纳,获得10
1秒前
yuli发布了新的文献求助10
1秒前
1秒前
1秒前
脑洞疼应助top采纳,获得10
1秒前
小贤发布了新的文献求助10
3秒前
赘婿应助只喝白开水采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
005zxy发布了新的文献求助10
5秒前
斯文败类应助龙傲天采纳,获得10
5秒前
5秒前
yoyo发布了新的文献求助10
6秒前
muyu发布了新的文献求助10
6秒前
stretchability完成签到,获得积分10
6秒前
小二郎应助123采纳,获得10
6秒前
6秒前
想做气质帅哥完成签到,获得积分20
7秒前
7秒前
uwasa发布了新的文献求助10
7秒前
冷静苗条发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
傲娇如天完成签到,获得积分10
10秒前
top完成签到,获得积分10
10秒前
10秒前
无尘发布了新的文献求助20
10秒前
10秒前
王楠发布了新的文献求助10
12秒前
mjq完成签到 ,获得积分10
12秒前
12秒前
麻辣香锅发布了新的文献求助30
12秒前
13秒前
儒雅的蓝天完成签到,获得积分10
14秒前
top发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553592
求助须知:如何正确求助?哪些是违规求助? 4638157
关于积分的说明 14652491
捐赠科研通 4580005
什么是DOI,文献DOI怎么找? 2512016
邀请新用户注册赠送积分活动 1486966
关于科研通互助平台的介绍 1457791