E-nose based on a high-integrated and low-power metal oxide gas sensor array

电子鼻 传感器阵列 材料科学 分析化学(期刊) 化学 计算机科学 纳米技术 色谱法 机器学习 有机化学
作者
Zhongzhou Li,Jun Yu,Diandian Dong,Guanyu Yao,Guangfen Wei,Aixiang He,Hao Wu,Huichao Zhu,Zhengxing Huang,Zhenan Tang
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:380: 133289-133289 被引量:64
标识
DOI:10.1016/j.snb.2023.133289
摘要

To improve the poor selectivity of a semiconductor gas-sensor system, an array of sensors can be utilized. However, this increases the system's size and power consumption. To overcome these limitations, we propose a high-integrated and highly selective electronic nose (E-nose) comprising two independent gas-sensing elements on a low-power microhotplate (MHP). Pd-SnO2 nanoflowers and Pd-WO3 microparticles were prepared and printed on a bridge-structured MHP 20 µm apart and over an area of 110 µm × 45 µm. This was achieved using electrohydrodynamic inkjet printing aided by in-situ infrared laser curing to form an array of sensors. A power of 17 mW was required to increase the temperature of the MHP to 300 °C, which is the optimal operating temperature of the two gas sensors. Thus, a high response and low cross-sensitivity were achieved for hydrogen, ammonia, hydrogen–ammonia, ethanol, acetone, ethanol–acetone, toluene, and formaldehyde. A wavelet transform was used to reduce the noise and dimensionality of the signals from the gas-sensor array. Qualitative identification of the eight gases with an accuracy of 99.86% was achieved using the k-nearest neighbor (kNN) model. A p neighbors back propagation neural network (pN-BPNN) model was established to remove interfering samples to quantitatively estimate the gas concentration. The quantitative identification accuracy of pN-BPNN was higher than that of the standard back propagation neural network (BPNN) model with the average absolute percentage error of hydrogen detection in the range of 15–500 ppm, decreasing from 5.44% to 2.08%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hy完成签到,获得积分10
2秒前
清爽天川完成签到,获得积分10
4秒前
4秒前
梦溪完成签到 ,获得积分10
7秒前
wjw完成签到,获得积分10
7秒前
斯寜应助杨桃采纳,获得10
8秒前
woobinhua发布了新的文献求助10
8秒前
Mr.Left完成签到,获得积分10
15秒前
evvj完成签到,获得积分10
18秒前
18秒前
科研通AI5应助唐寻菡采纳,获得10
18秒前
执着绿草完成签到 ,获得积分10
19秒前
子非魚发布了新的文献求助30
22秒前
钱念波发布了新的文献求助10
23秒前
CipherSage应助niu采纳,获得10
24秒前
情怀应助taster采纳,获得10
25秒前
小二郎应助woobinhua采纳,获得10
27秒前
丰都残卷完成签到,获得积分10
28秒前
Iron_five完成签到 ,获得积分10
28秒前
烟花应助ssy采纳,获得10
30秒前
谦让寻凝完成签到 ,获得积分10
30秒前
31秒前
zyz完成签到,获得积分10
31秒前
Aixia完成签到,获得积分10
34秒前
social_yjj完成签到,获得积分10
35秒前
Akim应助Quentin9998采纳,获得10
35秒前
李健应助科研通管家采纳,获得10
36秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
大模型应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
bc应助科研通管家采纳,获得10
36秒前
Aixia发布了新的文献求助10
37秒前
如果完成签到,获得积分10
38秒前
fd163c发布了新的文献求助10
39秒前
linhante完成签到 ,获得积分10
40秒前
41秒前
yellow完成签到 ,获得积分10
42秒前
lalala发布了新的文献求助10
44秒前
ssy发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734