Active target classification using a shallow neural network with dimension reduction

过度拟合 计算机科学 降维 人工神经网络 人工智能 还原(数学) 海洋哺乳动物与声纳 深度学习 维数(图论) 机器学习 声纳 卷积神经网络 降噪 模式识别(心理学) 数学 几何学 纯数学
作者
Sung‒Hoon Byun,Youngmin Choo
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:152 (4_Supplement): A62-A63
标识
DOI:10.1121/10.0015555
摘要

Techniques for automatically identifying sonar targets using machine learning algorithms are being actively developed, and modern algorithms based on deep learning are often considered first. However, deep learning based algorithms require a lot of data to train a neural network, and if there is not enough data, overfitting easily occurs and the performance on real data can be degraded. In fact, in the case of active target detection where there is not enough data, it has been reported that using a shallow neural network after extracting appropriately designed features from the raw data showed better detection performance than applying deep learning directly to the raw data. With regard to this, we investigate the performance of a shallow neural network combined with dimensionality reduction techniques for active sonar target classification. In particular, several linear and nonlinear dimension reduction techniques are compared in terms of target classification performance, and the effects of the characteristics of background noise and the presence of reverberation on the target classification performance are discussed. [This work was supported by the research project PES4380 funded by KRISO.]

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助xuan采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
田様应助fjkssadjk采纳,获得10
1秒前
1秒前
智商洼地发布了新的文献求助10
3秒前
3秒前
丁蕾完成签到,获得积分10
3秒前
小马甲应助猫好好采纳,获得10
3秒前
4秒前
大力帽子应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得30
6秒前
大鱼完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
大力帽子应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
球球完成签到,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
7秒前
kekong发布了新的文献求助10
7秒前
大个应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
是问发布了新的文献求助10
7秒前
emoo应助科研通管家采纳,获得10
7秒前
123发布了新的文献求助20
7秒前
pluto应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
求助人员应助科研通管家采纳,获得30
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636