MR-Selection: A Meta-Reinforcement Learning Approach for Zero-Shot Hyperspectral Band Selection

计算机科学 强化学习 选择(遗传算法) 高光谱成像 人工智能 机器学习 卷积神经网络 模式识别(心理学)
作者
Jie Feng,Gaiqin Bai,Di Li,Xiangrong Zhang,Ronghua Shang,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:30
标识
DOI:10.1109/tgrs.2022.3231870
摘要

Band selection is an effective method to deal with the difficulties in image transmission, storage, and processing caused by redundant and noisy bands in hyperspectral images (HSIs). Existing band selection methods usually need to learn a specific model for each HSI dataset, which ignores the inherent correlation and common knowledge among different band selection tasks. Meanwhile, these methods lead to a huge waste of computation. In this article, a novel zero-shot band selection method, called MR-Selection, is proposed for HSI classification. It formalizes zero-shot band selection as a metalearning problem, where advantage actor–critic algorithm-based reinforcement learning (A2C-RL) is designed to extract the metaknowledge in the band selection tasks of various seen hyperspectral datasets through a shared agent. To learn a consistent representation among different tasks, a dynamic structure-aware graph convolutional network is constructed to build a shared agent in A2C-RL. In A2C-RL, the state is tailored in a feasible way and easy to adapt to various tasks. Meanwhile, the reward is defined according to an efficient evaluation network, which can evaluate each state effectively without any fine-tuning. Furthermore, a two-stage optimization strategy is designed to coordinate optimization directions of a shared agent from different tasks effectively. Once the shared agent is optimized, it can be directly applied to unseen HSI band selection tasks without any available samples. Experimental results demonstrate the effectiveness and efficiency of the MR-Selection on the band selection of unseen HSI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SongNan_Ding发布了新的文献求助10
1秒前
云初完成签到 ,获得积分10
1秒前
1秒前
shmily完成签到,获得积分10
2秒前
2秒前
小徐要上学完成签到,获得积分10
2秒前
2秒前
不安的橘子完成签到 ,获得积分10
2秒前
minorcold发布了新的文献求助10
3秒前
未夕晴完成签到,获得积分10
3秒前
3秒前
骆驼牛子发布了新的文献求助10
3秒前
小李完成签到,获得积分10
4秒前
4秒前
Jenkin完成签到,获得积分10
4秒前
大个应助敬老院N号采纳,获得10
4秒前
万能图书馆应助敬老院N号采纳,获得10
4秒前
尺八完成签到,获得积分10
5秒前
一叶扁舟发布了新的文献求助10
6秒前
深情安青应助t通采纳,获得10
6秒前
嘻嘻哈哈完成签到,获得积分10
6秒前
GQ发布了新的文献求助10
6秒前
HWei完成签到,获得积分10
7秒前
啧啧啧完成签到,获得积分10
7秒前
8秒前
一念初见发布了新的文献求助10
9秒前
9秒前
9秒前
遇上就这样吧给鹤轸的求助进行了留言
9秒前
骆驼牛子完成签到,获得积分20
9秒前
10秒前
正义的土地爷完成签到,获得积分10
11秒前
灵感大王喵完成签到 ,获得积分10
11秒前
11秒前
无奈的天玉完成签到,获得积分10
12秒前
12秒前
追寻十八发布了新的文献求助30
12秒前
gpa发布了新的文献求助10
13秒前
SciGPT应助我想退学采纳,获得10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578