清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Emerging Trends and Innovations in Radiologic Diagnosis of Thoracic Diseases

医学 放射科
作者
Jiyoung Song,Eui Jin Hwang,Soon Ho Yoon,Chang Min Park,Jin Mo Goo
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rli.0000000000001179
摘要

Over the past decade, Investigative Radiology has published numerous studies that have fundamentally advanced the field of thoracic imaging. This review summarizes key developments in imaging modalities, computational tools, and clinical applications, highlighting major breakthroughs in thoracic diseases-lung cancer, pulmonary nodules, interstitial lung disease (ILD), chronic obstructive pulmonary disease (COPD), COVID-19 pneumonia, and pulmonary embolism-and outlining future directions.Artificial intelligence (AI)-driven computer-aided detection systems and radiomic analyses have notably improved the detection and classification of pulmonary nodules, while photon-counting detector CT (PCD-CT) and low-field MRI offer enhanced resolution or radiation-free strategies. For lung cancer, CT texture analysis and perfusion imaging refine prognostication and therapy planning. ILD assessment benefits from automated diagnostic tools and innovative imaging techniques, such as PCD-CT and functional MRI, which reduce the need for invasive diagnostic procedures while improving accuracy. In COPD, dual-energy CT-based ventilation/perfusion assessment and dark-field radiography enable earlier detection and staging of emphysema, complemented by deep learning approaches for improved quantification. COVID-19 research has underscored the clinical utility of chest CT, radiographs, and AI-based algorithms for rapid triage, disease severity evaluation, and follow-up. Furthermore, tuberculosis remains a significant global health concern, highlighting the importance of AI-assisted chest radiography for early detection and management. Meanwhile, advances in CT pulmonary angiography, including dual-energy reconstructions, allow more sensitive detection of pulmonary emboli.Collectively, these innovations demonstrate the power of merging novel imaging technologies, quantitative functional analysis, and AI-driven tools to transform thoracic disease management. Ongoing progress promises more precise and personalized diagnostic and therapeutic strategies for diverse thoracic diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木完成签到 ,获得积分10
1秒前
萝卜花1968发布了新的文献求助10
43秒前
朴素的语海完成签到,获得积分20
43秒前
萝卜花1968完成签到,获得积分10
53秒前
云墨完成签到 ,获得积分10
57秒前
烟花应助dylanqy采纳,获得30
1分钟前
tszjw168发布了新的文献求助10
1分钟前
mengliu完成签到,获得积分10
1分钟前
落落完成签到 ,获得积分0
2分钟前
2分钟前
优雅山柏发布了新的文献求助10
2分钟前
3分钟前
皮卡丘完成签到,获得积分10
3分钟前
努力努力再努力完成签到,获得积分10
3分钟前
Leon Lai完成签到,获得积分10
3分钟前
111完成签到 ,获得积分10
3分钟前
岳莹晓完成签到 ,获得积分10
3分钟前
陈陈陈完成签到 ,获得积分10
4分钟前
foyefeng完成签到 ,获得积分10
4分钟前
沉沉完成签到 ,获得积分0
4分钟前
4分钟前
非洲大象发布了新的文献求助50
4分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
非洲大象完成签到,获得积分10
5分钟前
violetlishu完成签到 ,获得积分10
5分钟前
有只小狗完成签到,获得积分10
5分钟前
hunbaekkkkk完成签到 ,获得积分10
6分钟前
orixero应助ma采纳,获得10
7分钟前
7分钟前
杨志坚完成签到 ,获得积分10
7分钟前
热狗完成签到 ,获得积分10
7分钟前
7分钟前
星辰大海应助葛力采纳,获得10
8分钟前
lilaccalla完成签到 ,获得积分10
9分钟前
9分钟前
ma发布了新的文献求助10
9分钟前
9分钟前
dylanqy发布了新的文献求助30
9分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526431
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603