The Impact of Cardiometabolic Index on Cardiovascular Disease Risk Among Diabetic Patients: Evidence From Two National Cohorts

医学 混淆 纵向研究 糖尿病 逻辑回归 队列研究 全国健康与营养检查调查 内科学 队列 疾病 腰围 体质指数 人口学 环境卫生 人口 内分泌学 病理 社会学
作者
Changxing Liu,Zhi-Rui Zhang,Tianwei Meng,Boyu Wang,Chengjia Li,Ximing Yu,Xulong Zhang
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:41 (4)
标识
DOI:10.1002/dmrr.70044
摘要

ABSTRACT Background This study investigates the relationship between the Cardiometabolic Index (CMI) and cardiovascular disease (CVD) risk in diabetic populations using data from the National Health and Nutrition Examination Survey (NHANES) and the China Health and Retirement Longitudinal Study (CHARLS). Understanding the predictive role of CMI in assessing CVD risk is essential for enhancing preventive strategies in diabetic patients. Methods A cross‐sectional analysis was conducted on diabetic participants from NHANES (2005–2018) and CHARLS (2011). CMI was calculated based on the waist‐to‐height ratio and the triglyceride‐to‐HDL‐C ratio. Multivariable logistic regression models and restricted cubic spline analyses were utilised to evaluate the associations between CMI and CVD risk, adjusting for demographic and clinical covariates. Results In the NHANES cohort ( n = 2044), a higher CMI was significantly associated with an increased risk of CVD after adjusting for confounding factors (OR = 2.01, p = 0.0074). Similarly, in the CHARLS cohort ( n = 3964), a higher CMI was linked to an elevated CVD risk (OR = 1.45, p = 0.009). Subgroup analyses demonstrated consistent results across various age, gender and health status subgroups. The restricted cubic spline analysis revealed significant non‐linear trends between CMI and CVD risk in both cohorts ( p < 0.05). Conclusion CMI is a robust and independent predictor of CVD risk among diabetic individuals across different populations. These findings highlight the potential clinical value of incorporating CMI into routine assessments to identify high‐risk diabetic patients. Future longitudinal studies are needed to further validate these findings and explore the underlying mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
H丶化羽发布了新的文献求助10
3秒前
lili完成签到,获得积分10
4秒前
5秒前
wary发布了新的文献求助10
5秒前
细腻灯泡完成签到,获得积分10
6秒前
7秒前
8秒前
科研通AI2S应助搬砖人采纳,获得10
9秒前
上官若男应助明亮的不正采纳,获得30
10秒前
彩色的涵瑶完成签到,获得积分10
10秒前
妮儿发布了新的文献求助10
10秒前
Margaret完成签到 ,获得积分10
10秒前
ant没有名字怎么办完成签到,获得积分10
11秒前
cdercder应助老婆婆采纳,获得10
13秒前
dyxx发布了新的文献求助10
13秒前
慕青应助受伤幻桃采纳,获得10
13秒前
Li发布了新的文献求助10
13秒前
14秒前
赵川完成签到 ,获得积分10
19秒前
顺心的面包完成签到,获得积分10
19秒前
牟翎完成签到,获得积分0
20秒前
多肉爱吃糖完成签到,获得积分10
20秒前
希望天下0贩的0应助dyxx采纳,获得10
21秒前
21秒前
21秒前
妮儿完成签到,获得积分10
23秒前
23秒前
羊_完成签到,获得积分10
24秒前
Li完成签到,获得积分10
25秒前
天天快乐应助搬砖人采纳,获得10
25秒前
内向小虾米完成签到,获得积分10
26秒前
椿上春树发布了新的文献求助10
27秒前
27秒前
三顿饭吃一天完成签到,获得积分10
28秒前
MXX关闭了MXX文献求助
28秒前
活泼新儿完成签到 ,获得积分10
28秒前
momo发布了新的文献求助10
28秒前
金甲狮王完成签到,获得积分10
29秒前
豆豆小baby完成签到,获得积分10
29秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Oxford Handbook of Video Game Music and Sound 200
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826252
求助须知:如何正确求助?哪些是违规求助? 3368664
关于积分的说明 10451634
捐赠科研通 3088000
什么是DOI,文献DOI怎么找? 1698916
邀请新用户注册赠送积分活动 817222
科研通“疑难数据库(出版商)”最低求助积分说明 770084