亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning with decision curve analysis evaluates nutritional metabolic biomarkers for cardiovascular-kidney-metabolic risk: an NHANES analysis

医学 重症监护医学 环境卫生 计算机科学 风险分析(工程)
作者
Jun Huang,Zhuo Liu,Weiyue Feng,Ya‐Chun Huang,Xigao Cheng
出处
期刊:Frontiers in Nutrition [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fnut.2025.1597864
摘要

The American Heart Association recently introduced the concept of Cardiovascular-Kidney-Metabolic Syndrome (CKM), emphasizing the interplay between metabolic disorders, cardiovascular diseases, and kidney diseases. Although insulin resistance (IR) and chronic inflammation are core drivers of CKM, the relationships causing imbalance have not been fully evaluated. Emerging biomarkers (RAR, NPAR, SIRI, Homair) offer multidimensional prediction capabilities by simultaneously assessing nutritional metabolism, cellular inflammation, and insulin resistance in diabetes. This study included data from 19,884 participants in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. The study developed novel indices (RAR, NPAR, SIRI, Homair) and assessed their CKM predictive value through: Multivariable logistic/Cox regression; Restricted cubic splines; Machine learning (XGBoost, LightGBM); Decision curve analysis. Subgroup analyses were conducted to assess interactive effects on specific populations. After weighted analysis, multi-model logistic regression showed that RAR, SIRI, NPAR, and Homair remained strongly correlated with CKM after adjusting for various factors (p < 0.05), with RAR showing the most pronounced relationship (OR: 2.73, 95% CI: 2.07-3.59, p < 0.001). RCS curves revealed nonlinear relationships between these factors and outcomes (nonlinear p < 0.05). In multi-model Cox regression, RAR, SIRI, and NPAR were associated with all-cause mortality (p < 0.05), and RAR was linked to all-cause, cardiovascular disease (CVD), and kidney disease mortality (p < 0.05), with the strongest link (OR: 2.38, 95% CI: 1.98-2.88, p < 0.001). Machine learning ranked RAR, SIRI, and Homair as top predictors for CKM diagnosis. The DCA model further validated these three Lasso-selected variables, showing clinical utility. The model combining RAR, diabetes mellitus (DM), and age demonstrated outstanding performance (AUC = 0.907), offering clinical reference value. This study demonstrates significant relationship between RAR, NPAR, SIRI, and Homair with the five stages of CKM, with RAR showing the robust association. DCA-confirmed RAR demonstrates high clinical translatability as a standalone predictor for CKM risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oleskarabach发布了新的文献求助10
4秒前
cdercder应助科研通管家采纳,获得10
17秒前
cdercder应助科研通管家采纳,获得10
17秒前
cdercder应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
jyy应助科研通管家采纳,获得10
18秒前
27秒前
Jj7完成签到,获得积分10
35秒前
Kevin完成签到 ,获得积分10
42秒前
xh发布了新的文献求助10
48秒前
56秒前
zhengzheng发布了新的文献求助30
1分钟前
xh完成签到,获得积分10
1分钟前
1分钟前
魁梧的败发布了新的文献求助10
1分钟前
花陵完成签到 ,获得积分10
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
2分钟前
seabrook发布了新的文献求助10
2分钟前
没烦恼发布了新的文献求助10
2分钟前
2分钟前
Nauyt完成签到,获得积分10
3分钟前
shea发布了新的文献求助10
3分钟前
Hello应助没烦恼采纳,获得10
3分钟前
大个应助shea采纳,获得10
3分钟前
3分钟前
小乐发布了新的文献求助10
3分钟前
Mercurymons完成签到,获得积分10
3分钟前
3分钟前
hairgod完成签到,获得积分10
3分钟前
务实水蓝完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
cdercder应助科研通管家采纳,获得10
4分钟前
4分钟前
armpit完成签到,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847654
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561470
捐赠科研通 3110665
什么是DOI,文献DOI怎么找? 1714465
邀请新用户注册赠送积分活动 825242
科研通“疑难数据库(出版商)”最低求助积分说明 775421