Crash risk prediction and analysis from the perspective of alignment and environment features: A study on an expressway in a hilly area

透视图(图形) 撞车 毒物控制 职业安全与健康 伤害预防 运输工程 人为因素与人体工程学 工程类 法律工程学 自杀预防 计算机科学 风险分析(工程) 人工智能 业务 医疗急救 医学 病理 程序设计语言
作者
Pengcheng Qin,Jie He,Zhang Changjian,Xintong Yan,Chenwei Wang,Yuntao Ye,Zhiming Fang
出处
期刊:Traffic Injury Prevention [Taylor & Francis]
卷期号:: 1-11
标识
DOI:10.1080/15389588.2025.2459297
摘要

Expressways in hilly areas feature complex alignment and environments constrained by terrain conditions, significantly threatening life and property safety. This study aims to investigate crash risk prediction of expressways in hilly areas through alignment and environment features and identify determinants of the high risk for safety improvement. Based on 5 years of crash data on casualties and property damage of an expressway in southwestern China, the order technique and five clustering algorithms were employed to determine and classify risk levels. Environment features were extracted by semantic segmentation with a DeepLabv3 model. The study established four ensemble learning models to predict crash risks, and the interpretable model approach was adopted to understand contributing features. XGBoost achieved the best overall performance, with the accuracy and F1 score reaching 0.9259 and 0.8886. The proportion and variation rate of trucks and cars, and the proportions of constructions and the road positively correlated with high risks, while the proportions of the vegetation and road had negative correlations. The horizontal and vertical alignments, including long steep slopes, smaller curve radii, shorter transition curves, and smaller convex and concave curves radii, were linked to high risks. This study proposes an approach to predict crash risks on road sections without historical crash data. Combining the XGBoost model with the SHAP approach, enables accurate identification of risks on expressways in hilly areas using alignment and environment features and enhances the understanding of how these factors contribute to high risks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳仔完成签到 ,获得积分10
1秒前
桐桐应助Free采纳,获得10
1秒前
ajun完成签到,获得积分10
1秒前
一一完成签到 ,获得积分10
1秒前
饱满酸奶完成签到,获得积分10
2秒前
2秒前
2秒前
冰雨Flory完成签到,获得积分10
4秒前
安安完成签到,获得积分10
4秒前
fufufufu完成签到,获得积分10
4秒前
kyle完成签到 ,获得积分10
5秒前
立军发布了新的文献求助10
5秒前
lucky完成签到,获得积分10
6秒前
李健应助至幸采纳,获得10
7秒前
7秒前
bomb发布了新的文献求助10
7秒前
7秒前
帅气的怼怼完成签到,获得积分10
8秒前
李雨完成签到,获得积分10
8秒前
旋转木马9个完成签到 ,获得积分10
8秒前
TuZhuling完成签到,获得积分10
8秒前
Cheng完成签到,获得积分10
8秒前
Lu完成签到,获得积分10
9秒前
害羞聋五发布了新的文献求助20
9秒前
欣慰听南完成签到,获得积分10
9秒前
从容的路灯完成签到,获得积分10
10秒前
fishss完成签到,获得积分10
10秒前
现代的妍完成签到,获得积分10
11秒前
澜生完成签到,获得积分10
11秒前
寞本轩昂完成签到 ,获得积分10
11秒前
可乐完成签到 ,获得积分10
11秒前
12秒前
maozl完成签到 ,获得积分10
12秒前
12秒前
不回首完成签到 ,获得积分10
13秒前
13秒前
可爱的函函应助Cindy采纳,获得10
14秒前
啊哦完成签到 ,获得积分10
14秒前
小刘完成签到,获得积分10
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808241
求助须知:如何正确求助?哪些是违规求助? 3352939
关于积分的说明 10362041
捐赠科研通 3069095
什么是DOI,文献DOI怎么找? 1685376
邀请新用户注册赠送积分活动 810433
科研通“疑难数据库(出版商)”最低求助积分说明 766150