清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-View Self-Supervised Learning Enhances Automatic Sleep Staging from EEG Signals

脑电图 计算机科学 睡眠(系统调用) 人工智能 语音识别 睡眠阶段 心理学 多导睡眠图 神经科学 操作系统
作者
Tianyou Yu,Xinxin Hu,Yanbin He,Wei Wu,Zhenghui Gu,Zhuliang Yu,Yuanqing Li,Fei Wang,Jun Xiao
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tbme.2025.3561228
摘要

Deep learning-based methods for automatic sleep staging offer an efficient and objective alternative to costly manual scoring. However, their reliance on extensive labeled datasets and the challenge of generalization to new subjects and datasets limit their widespread adoption. Self-supervised learning (SSL) has emerged as a promising solution to address these issues by learning transferable representations from unlabeled data. This study highlights the effectiveness of SSL in automated sleep staging, utilizing a customized SSL approach to train a multi-view sleep staging model. This model includes a temporal view feature encoder for raw EEG signals and a spectral view feature encoder for time-frequency features. During pretraining, we incorporate a cross-view contrastive loss in addition to a contrastive loss for each view to learn complementary features and ensure consistency between views, enhancing the transferability and robustness of learned features. A dynamic weighting algorithm balances the learning speed of different loss components. Subsequently, these feature encoders, combined with a sequence encoder and a linear classifier, enable sleep staging after finetuning with labeled data. Evaluation on three publicly available datasets demonstrates that finetuning the entire SSL-pretrained model achieves competitive accuracy with state-of-the-art methods-86.4%, 83.8%, and 85.5% on SleepEDF-20, SleepEDF-78, and MASS datasets, respectively. Notably, our framework achieves near-equivalent performance with only 5% of the labeled data compared to full-label supervised training, showcasing SSL's potential to enhance automated sleep staging efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼板栗完成签到 ,获得积分10
9秒前
10秒前
韭菜盒子完成签到,获得积分20
11秒前
clm完成签到 ,获得积分10
22秒前
tianshanfeihe完成签到 ,获得积分10
22秒前
万能图书馆应助墨月白采纳,获得10
24秒前
dx完成签到,获得积分10
24秒前
27秒前
debu9完成签到,获得积分10
30秒前
34秒前
螃蟹发布了新的文献求助30
39秒前
Monicadd完成签到 ,获得积分10
41秒前
xiaobin发布了新的文献求助30
45秒前
江幻天完成签到,获得积分10
48秒前
51秒前
52秒前
完犊子完成签到,获得积分20
54秒前
量子星尘发布了新的文献求助10
59秒前
醉熏的千柳完成签到 ,获得积分10
1分钟前
墨月白完成签到,获得积分10
1分钟前
无限的含羞草完成签到,获得积分10
1分钟前
1分钟前
1分钟前
皮皮完成签到 ,获得积分10
1分钟前
六一儿童节完成签到 ,获得积分10
1分钟前
1分钟前
JD完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
新奇完成签到 ,获得积分10
2分钟前
2分钟前
alexlpb完成签到,获得积分0
2分钟前
whuhustwit完成签到,获得积分10
2分钟前
2分钟前
雪妮完成签到 ,获得积分10
2分钟前
yu完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
caoyuhui完成签到 ,获得积分10
2分钟前
yy完成签到 ,获得积分10
2分钟前
yshj完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270699
求助须知:如何正确求助?哪些是违规求助? 3801051
关于积分的说明 11911033
捐赠科研通 3447881
什么是DOI,文献DOI怎么找? 1891113
邀请新用户注册赠送积分活动 941822
科研通“疑难数据库(出版商)”最低求助积分说明 845964