Multi-View Self-Supervised Learning Enhances Automatic Sleep Staging from EEG Signals

脑电图 计算机科学 睡眠(系统调用) 人工智能 语音识别 睡眠阶段 心理学 多导睡眠图 神经科学 操作系统
作者
Tianyou Yu,Xinxin Hu,Yanbin He,Wei Wu,Zhenghui Gu,Zhuliang Yu,Yuanqing Li,Fei Wang,Jun Xiao
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tbme.2025.3561228
摘要

Deep learning-based methods for automatic sleep staging offer an efficient and objective alternative to costly manual scoring. However, their reliance on extensive labeled datasets and the challenge of generalization to new subjects and datasets limit their widespread adoption. Self-supervised learning (SSL) has emerged as a promising solution to address these issues by learning transferable representations from unlabeled data. This study highlights the effectiveness of SSL in automated sleep staging, utilizing a customized SSL approach to train a multi-view sleep staging model. This model includes a temporal view feature encoder for raw EEG signals and a spectral view feature encoder for time-frequency features. During pretraining, we incorporate a cross-view contrastive loss in addition to a contrastive loss for each view to learn complementary features and ensure consistency between views, enhancing the transferability and robustness of learned features. A dynamic weighting algorithm balances the learning speed of different loss components. Subsequently, these feature encoders, combined with a sequence encoder and a linear classifier, enable sleep staging after finetuning with labeled data. Evaluation on three publicly available datasets demonstrates that finetuning the entire SSL-pretrained model achieves competitive accuracy with state-of-the-art methods-86.4%, 83.8%, and 85.5% on SleepEDF-20, SleepEDF-78, and MASS datasets, respectively. Notably, our framework achieves near-equivalent performance with only 5% of the labeled data compared to full-label supervised training, showcasing SSL's potential to enhance automated sleep staging efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助wltwb采纳,获得10
刚刚
刚刚
刚刚
刚刚
薯条怎么解决问题完成签到,获得积分10
刚刚
1秒前
顾矜应助踏实志泽采纳,获得10
1秒前
wang可爱额完成签到 ,获得积分10
1秒前
W-w发布了新的文献求助10
2秒前
梁亚龙发布了新的文献求助10
2秒前
李爱国应助一小部分我采纳,获得10
2秒前
Dr.feng发布了新的文献求助10
3秒前
4秒前
MrS发布了新的文献求助10
4秒前
所所应助tctc采纳,获得10
4秒前
竹筏过海应助whatever采纳,获得100
4秒前
屁屁小彭发布了新的文献求助10
5秒前
5秒前
迷失沉寂完成签到,获得积分10
5秒前
英姑应助小宇子采纳,获得10
6秒前
devilito发布了新的文献求助10
6秒前
田様应助powerfuled采纳,获得10
6秒前
GAN完成签到,获得积分10
6秒前
奔波霸完成签到 ,获得积分10
6秒前
7秒前
小龙发布了新的文献求助10
7秒前
7秒前
bx陈发布了新的文献求助30
8秒前
鱼鱼色发布了新的文献求助10
8秒前
大模型应助hebilie采纳,获得30
8秒前
热心子轩应助含糊的立轩采纳,获得10
9秒前
好好书童发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
盐植物完成签到,获得积分10
10秒前
Kel发布了新的文献求助10
11秒前
12秒前
13秒前
JachinHe完成签到,获得积分10
13秒前
orixero应助Tiamo采纳,获得10
14秒前
踏实志泽发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4895731
求助须知:如何正确求助?哪些是违规求助? 4177560
关于积分的说明 12968471
捐赠科研通 3940681
什么是DOI,文献DOI怎么找? 2161969
邀请新用户注册赠送积分活动 1180348
关于科研通互助平台的介绍 1085932