Construction of a risk prediction model for occupational noise-induced hearing loss using routine blood and biochemical indicators in Shenzhen, China: a predictive modelling study

医学 预测建模 接收机工作特性 试验装置 听力损失 机器学习 噪声性听力损失 数据集 特征选择 噪音(视频) 人工智能 计算机科学 听力学 内科学 噪声暴露 图像(数学)
作者
Caiping Li,Lifang Shi,L. M. Chen,Dafeng Lin,Xiangli Yang,Peimao Li,Wen Zhang,Wenting Feng,Yan Guo,Liang Zhou,N Zhang,Dianpeng Wang
出处
期刊:BMJ Open [BMJ]
卷期号:15 (4): e097249-e097249
标识
DOI:10.1136/bmjopen-2024-097249
摘要

Objectives Occupational noise-induced hearing loss (ONIHL) represents a prevalent occupational health condition, traditionally necessitating multiple pure-tone audiometry assessments. We have developed and validated a machine learning model leveraging routine haematological and biochemical parameters, thereby offering novel insights into the risk prediction of ONIHL. Design, setting and participants This study analysed data from 3297 noise-exposed workers in Shenzhen, including 160 ONIHL cases, with the data set divided into D1 (2868 samples, 107 ONIHL cases) and D2 (429 samples, 53 ONIHL cases). The inclusion criteria were formulated based on the GBZ49-2014 Diagnosis of Occupational Noise-Induced Hearing Loss . Model training was performed using D1, and model validation was conducted using D2. Routine blood and biochemical indicators were extracted from the case data, and a range of machine learning algorithms including extreme gradient boosting (XGBoost) were employed to construct predictive models. The model underwent refinement to identify the most representative variables, and decision curve analysis was conducted to evaluate the net benefit of the model across various threshold levels. Primary outcome measures Model creation data set and validation data sets: ONIHL. Results The prediction model, developed using XGBoost, demonstrated exceptional performance, achieving an area under the receiver operating characteristic curve (AUC) of 0.942, a sensitivity of 0.875 and a specificity of 0.936 on the validation data set. On the test data set, the model achieved an AUC of 0.990. After implementing feature selection, the model was refined to include only 16 features, while maintaining strong performance on a newly acquired independent data set, with an AUC of 0.872, a balanced accuracy of 0.798, a sensitivity of 0.755 and a specificity of 0.840. The analysis of feature importance revealed that serum albumin (ALB), platelet distribution width (PDW), coefficient of variation in red cell distribution width (RDW-CV), serum creatinine (Scr) and lymphocyte percentage (LYMPHP) are critical factors for risk stratification in patients with ONIHL. Conclusion The analysis of feature importance identified ALB, PDW, RDW-CV, Scr and LYMPHP as pivotal factors for risk stratification in patients with ONIHL. The machine learning model, using XGBoost, effectively distinguishes patients with ONIHLamong individuals exposed to noise, thereby facilitating early diagnosis and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu完成签到,获得积分10
刚刚
噜啦啦发布了新的文献求助10
刚刚
LiuJ发布了新的文献求助10
1秒前
OeO完成签到 ,获得积分10
1秒前
2秒前
LiuJ发布了新的文献求助10
2秒前
2秒前
3秒前
wise111发布了新的文献求助10
3秒前
天天快乐应助长情胡萝卜采纳,获得10
3秒前
4秒前
谷粱世立发布了新的文献求助10
4秒前
5秒前
王小狗完成签到,获得积分10
5秒前
shuiyi关注了科研通微信公众号
5秒前
旺旺雪饼完成签到,获得积分10
5秒前
LiuJ发布了新的文献求助10
5秒前
LiuJ发布了新的文献求助10
5秒前
开朗白山发布了新的文献求助10
5秒前
js发布了新的文献求助10
7秒前
莓莓应助啦啦啦采纳,获得20
8秒前
落后的凝梦完成签到 ,获得积分10
9秒前
fuwafuwa发布了新的文献求助10
10秒前
10秒前
王小狗发布了新的文献求助10
11秒前
搬砖发布了新的文献求助10
11秒前
11秒前
情怀应助高高千儿采纳,获得10
11秒前
13秒前
hu完成签到,获得积分10
13秒前
13秒前
秀丽的小懒虫完成签到,获得积分10
13秒前
万能图书馆应助wu采纳,获得10
14秒前
abab完成签到 ,获得积分10
14秒前
小二郎应助kongkai采纳,获得10
14秒前
WuzJ1ee完成签到,获得积分20
15秒前
wxj完成签到 ,获得积分10
15秒前
15秒前
16秒前
G666发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344703
求助须知:如何正确求助?哪些是违规求助? 4479862
关于积分的说明 13944504
捐赠科研通 4377029
什么是DOI,文献DOI怎么找? 2405035
邀请新用户注册赠送积分活动 1397569
关于科研通互助平台的介绍 1369942