Engineering Hydrophobic Hierarchical Supramolecular Interactions in Reversibly Cross-Linked Elastomers for Outstanding Water Resistance

材料科学 弹性体 超分子化学 耐水性 高分子科学 纳米技术 复合材料 分子 有机化学 化学
作者
Shengnan Zhan,Houyu Zhang,Baige Yang,Yu‐Mo Zhang,Xingyuan Lu,Xiaohan Wang,Junqi Sun
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:2
标识
DOI:10.1021/acsami.5c03828
摘要

Achieving outstanding water resistance in reversibly cross-linked elastomers (RCEs) remains challenging due to the presence of polar and hydrophilic groups within polymer chains. In this study, we present the fabrication of mechanically robust, healable, and recyclable RCEs with exceptional water resistance by incorporating hydrophobic hierarchical supramolecular interactions into poly(tetramethylene ether glycol) (PTMEG)-based polyurethane elastomers. These hierarchical supramolecular interactions, consisting of hydrogen bonding and π-π stacking, exhibit high binding energy, facilitating the in situ formation of phase-separated hydrophobic nanostructures that significantly enhance the water resistance of the elastomers. Consequently, the elastomers exhibit outstanding water resistance, with a water absorption as low as 1.1 wt % even after 40 days of immersion in water. In addition to their superior water resistance, the elastomers exhibit excellent mechanical properties, including a tensile strength of ∼67.8 MPa, toughness of ∼633 MJ m-3, and fracture energy of ∼160 kJ m-2. These mechanical properties are attributed to the synergistic effects of phase-separated nanostructures and strain-induced crystallization of PTMEG segments. Furthermore, the reversibility of the hydrophobic hierarchical supramolecular interactions enables the convenient healing and recycling of the elastomers, allowing the healed and recycled elastomers to restore their original mechanical performance. These elastomers were further demonstrated to be effective in encapsulating flexible electrochromic devices for underwater applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白日梦完成签到,获得积分10
刚刚
可爱花瓣发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
慕青应助小丸子采纳,获得10
1秒前
2秒前
sunianjinshi完成签到,获得积分10
2秒前
wanci应助infognet采纳,获得10
2秒前
桂鱼发布了新的文献求助10
2秒前
3秒前
shuoshuo完成签到,获得积分20
3秒前
4秒前
所所应助小郭采纳,获得10
4秒前
wyn完成签到,获得积分10
4秒前
4秒前
哎呀发布了新的文献求助10
4秒前
4秒前
5秒前
无风发布了新的文献求助10
6秒前
勤劳茗完成签到,获得积分20
6秒前
英姑应助张奎采纳,获得10
7秒前
852应助早睡早起采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
小凡发布了新的文献求助30
9秒前
lyfang发布了新的文献求助10
9秒前
10秒前
Kodsuc完成签到,获得积分10
10秒前
华仔应助Lidia采纳,获得30
10秒前
王大纯完成签到,获得积分20
10秒前
11秒前
11秒前
11秒前
11秒前
开朗阁发布了新的文献求助30
11秒前
Qxd_111发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959983
求助须知:如何正确求助?哪些是违规求助? 4220536
关于积分的说明 13143223
捐赠科研通 4004417
什么是DOI,文献DOI怎么找? 2191353
邀请新用户注册赠送积分活动 1205645
关于科研通互助平台的介绍 1116915