YOLO-LiRa:Lightweight detection algorithm for small aerial targets

里拉 计算机科学 人工智能 算法 业务 财务 汇率
作者
Hui Wang,Yajun Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/addbf9
摘要

Abstract With the rapid development of drone technology, aerial small target detection has
become an important research direction in the field of computer vision. This paper proposes a
lightweight object detection algorithm based on YOLOv11, YOLO-LiRa(Lightweight
Intelligent Remote-sensing Algorithm), to address the issues of small size, complex background,
and dense targets faced by small object detection in aerial images. Incorporating Monte Carlo
attention mechanism (MCA) and partial convolution into the C3K2 module enhances the
extraction of small target features and reduces computational complexity. Referring to the
lightweight design concept of MobileNetV3 to optimize the backbone network, combined with
GSConv and VoVGSCSP modules, the multi-scale feature fusion capability of the neck network
is enhanced. Moreover, the feature map resolution and detection performance were optimized
using the DySample upsampling operator. Experiments on the publicly available AI-TOD
datasets have shown that YOLO-LiRa achieves 0.27 on the mAP50-95 evaluation metric,
reducing the parameter count by 24.4% and computational complexity by 12.5% compared to
the Baseline model, while achieving a good balance between detection accuracy and speed.
Compared with other mainstream object detection algorithms, YOLO-LiRa exhibits more
competitive performance in small object detection tasks. The method proposed in this article is
suitable for applications such as unmanned aerial vehicle monitoring, intelligent transportation,
and agricultural monitoring that require high lightweight and real-time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
熊猫侠发布了新的文献求助10
4秒前
zzz发布了新的文献求助10
5秒前
善良的高烽完成签到 ,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
nakl发布了新的文献求助10
7秒前
8秒前
东吴是吴完成签到,获得积分10
8秒前
Qiao关注了科研通微信公众号
12秒前
青柠味薯片应助熊猫侠采纳,获得10
12秒前
现代化脑完成签到,获得积分10
12秒前
14秒前
CipherSage应助虚心元绿采纳,获得10
14秒前
贺光萌发布了新的文献求助10
14秒前
王聿杰发布了新的文献求助10
15秒前
殷勤的聪健完成签到,获得积分10
16秒前
17秒前
jingjing完成签到,获得积分10
17秒前
闾丘剑封发布了新的文献求助10
18秒前
领导范儿应助LXAYUI采纳,获得10
19秒前
19秒前
19秒前
李子发布了新的文献求助10
19秒前
林佳完成签到 ,获得积分10
20秒前
21秒前
Haha发布了新的文献求助20
22秒前
24秒前
Hello应助重要的念梦采纳,获得10
25秒前
Qiao发布了新的文献求助10
25秒前
lzr发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
轻松元柏完成签到,获得积分10
29秒前
29秒前
shaw完成签到,获得积分10
31秒前
王聿杰关注了科研通微信公众号
31秒前
科研通AI5应助0326采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Colorectal cancer: understanding of disease 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4855689
求助须知:如何正确求助?哪些是违规求助? 4152539
关于积分的说明 12868780
捐赠科研通 3902302
什么是DOI,文献DOI怎么找? 2144207
邀请新用户注册赠送积分活动 1163779
关于科研通互助平台的介绍 1064388