Transforming Healthcare: Intelligent Wearable Sensors Empowered by Smart Materials and Artificial Intelligence

可穿戴计算机 可穿戴技术 计算机科学 医疗保健 人机交互 智能传感器 人工智能 系统工程 无线传感器网络 嵌入式系统 工程类 计算机网络 经济 经济增长
作者
Shuwen Chen,Shicheng Fan,Zheng Qiao,Zixiong Wu,Baobao Lin,Zhijie Li,Michael A. Riegler,M. K. Wong,Arve Opheim,O. Korostynska,Kaare Magne Nielsen,Thomas Glott,Anne Catrine Trægde Martinsen,Vibeke H. Telle‐Hansen,Chwee Teck Lim
出处
期刊:Advanced Materials [Wiley]
被引量:25
标识
DOI:10.1002/adma.202500412
摘要

Intelligent wearable sensors, empowered by machine learning and innovative smart materials, enable rapid, accurate disease diagnosis, personalized therapy, and continuous health monitoring without disrupting daily life. This integration facilitates a shift from traditional, hospital-centered healthcare to a more decentralized, patient-centric model, where wearable sensors can collect real-time physiological data, provide deep analysis of these data streams, and generate actionable insights for point-of-care precise diagnostics and personalized therapy. Despite rapid advancements in smart materials, machine learning, and wearable sensing technologies, there is a lack of comprehensive reviews that systematically examine the intersection of these fields. This review addresses this gap, providing a critical analysis of wearable sensing technologies empowered by smart advanced materials and artificial Intelligence. The state-of-the-art smart materials-including self-healing, metamaterials, and responsive materials-that enhance sensor functionality are first examined. Advanced machine learning methodologies integrated into wearable devices are discussed, and their role in biomedical applications is highlighted. The combined impact of wearable sensors, empowered by smart materials and machine learning, and their applications in intelligent diagnostics and therapeutics are also examined. Finally, existing challenges, including technical and compliance issues, information security concerns, and regulatory considerations are addressed, and future directions for advancing intelligent healthcare are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助yijieLU采纳,获得10
刚刚
乐观乐枫发布了新的文献求助10
刚刚
刘倩发布了新的文献求助10
2秒前
shaoshao86完成签到,获得积分10
2秒前
斯文败类应助岁月轮回采纳,获得10
2秒前
研友_VZG7GZ应助柏柏采纳,获得10
2秒前
2秒前
2秒前
Jasper应助牟泓宇采纳,获得10
3秒前
Modric发布了新的文献求助10
5秒前
zjjcug完成签到,获得积分10
6秒前
6秒前
babalababa发布了新的文献求助10
7秒前
7秒前
HmH完成签到,获得积分20
7秒前
8秒前
SciGPT应助肥仔龙采纳,获得10
8秒前
9秒前
聪慧砖头应助科研通管家采纳,获得20
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
不配.应助科研通管家采纳,获得50
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
不配.应助科研通管家采纳,获得100
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
lio完成签到,获得积分20
13秒前
RC_Wang发布了新的文献求助10
14秒前
gkzwww完成签到,获得积分10
14秒前
14秒前
CipherSage应助威武缘郡采纳,获得10
15秒前
黄雪峰发布了新的文献求助10
15秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5240494
求助须知:如何正确求助?哪些是违规求助? 4407577
关于积分的说明 13719134
捐赠科研通 4276320
什么是DOI,文献DOI怎么找? 2346488
邀请新用户注册赠送积分活动 1343668
关于科研通互助平台的介绍 1301689