Transforming Healthcare: Intelligent Wearable Sensors Empowered by Smart Materials and Artificial Intelligence

可穿戴计算机 可穿戴技术 计算机科学 医疗保健 人机交互 智能传感器 人工智能 系统工程 无线传感器网络 嵌入式系统 工程类 计算机网络 经济 经济增长
作者
Shuwen Chen,Shicheng Fan,Zheng Qiao,Zixiong Wu,Baobao Lin,Zhijie Li,Michael A. Riegler,M. K. Wong,Arve Opheim,O. Korostynska,Kaare Magne Nielsen,Thomas Glott,Anne Catrine Trægde Martinsen,Vibeke H. Telle‐Hansen,Chwee Teck Lim
出处
期刊:Advanced Materials [Wiley]
被引量:8
标识
DOI:10.1002/adma.202500412
摘要

Intelligent wearable sensors, empowered by machine learning and innovative smart materials, enable rapid, accurate disease diagnosis, personalized therapy, and continuous health monitoring without disrupting daily life. This integration facilitates a shift from traditional, hospital-centered healthcare to a more decentralized, patient-centric model, where wearable sensors can collect real-time physiological data, provide deep analysis of these data streams, and generate actionable insights for point-of-care precise diagnostics and personalized therapy. Despite rapid advancements in smart materials, machine learning, and wearable sensing technologies, there is a lack of comprehensive reviews that systematically examine the intersection of these fields. This review addresses this gap, providing a critical analysis of wearable sensing technologies empowered by smart advanced materials and artificial Intelligence. The state-of-the-art smart materials-including self-healing, metamaterials, and responsive materials-that enhance sensor functionality are first examined. Advanced machine learning methodologies integrated into wearable devices are discussed, and their role in biomedical applications is highlighted. The combined impact of wearable sensors, empowered by smart materials and machine learning, and their applications in intelligent diagnostics and therapeutics are also examined. Finally, existing challenges, including technical and compliance issues, information security concerns, and regulatory considerations are addressed, and future directions for advancing intelligent healthcare are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
个性的紫菜应助YIN采纳,获得10
1秒前
卫元灵完成签到,获得积分20
2秒前
刘优秀完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
鲤鱼迎南完成签到 ,获得积分10
5秒前
kjh发布了新的文献求助10
6秒前
小熊软糖发布了新的文献求助10
8秒前
8秒前
直率新柔发布了新的文献求助10
8秒前
9秒前
累加法发布了新的文献求助10
9秒前
10秒前
上官若男应助笑尽往事采纳,获得10
12秒前
cryjslong完成签到,获得积分10
13秒前
15秒前
精明凡双发布了新的文献求助10
15秒前
季然完成签到,获得积分10
15秒前
端庄凌文完成签到,获得积分10
15秒前
情怀应助卫元灵采纳,获得10
15秒前
mzr完成签到,获得积分10
17秒前
董建洋完成签到,获得积分10
18秒前
18秒前
兔子应助种花家的狗狗采纳,获得10
18秒前
情怀应助很美味采纳,获得10
19秒前
大头狸花完成签到,获得积分10
19秒前
兔子应助小柚采纳,获得10
19秒前
21秒前
21秒前
彪壮的砖家完成签到,获得积分10
22秒前
23秒前
26秒前
笑尽往事发布了新的文献求助10
26秒前
Lucas应助石建国采纳,获得10
27秒前
29秒前
CipherSage应助mzr采纳,获得10
29秒前
yysghr完成签到,获得积分10
31秒前
谢谢发布了新的文献求助20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746159
求助须知:如何正确求助?哪些是违规求助? 4094000
关于积分的说明 12665831
捐赠科研通 3805783
什么是DOI,文献DOI怎么找? 2101102
邀请新用户注册赠送积分活动 1126432
关于科研通互助平台的介绍 1002953