抗菌剂
糖
化学
食品科学
脂肪酸
生物化学
有机化学
作者
Ziyi Zhang,Qinlu Lin,Zhengyu Huang,Dong Xu,Kangzi Ren
标识
DOI:10.1080/10408398.2025.2490273
摘要
Sugar-fatty acid esters and their analogs (SFAEA) exhibit broad-spectrum antimicrobial activities. The article comprehensively outlined their inhibitory potential against key pathogenic and spoilage bacteria as well as fungal species. Antibacterial efficacy is quantitatively assessed using minimum inhibitory concentration (MIC), and antifungal activity is typically characterized by inhibition zones or mycelial growth inhibition rates. Research highlighted that sugar esters incorporating medium- to long-chain fatty acids, particularly those derived from sucrose, galactose, and mannose, demonstrated superior antibacterial properties. The lauric acid and myristic acid moieties were found to be exceptional compared to other length in the fatty acid portion. The chain length of the hydrophobic group, the glycosyl structure and the substitution level and type of the hydrophobic group in the sugar ester and other factors all have an impact on the antibacterial effect. It was found that the disruption of cell envelope, the generation of reactive oxygen species, the interactions with cytoplasmic contents and the influences on metabolic pathways were major reasons leading to cell death. Omics technologies and molecular docking also suggested some potential mechanisms. Additionally, future research directions regarding the application in food and mechanistic studies were presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI