Contextual Learning with Online Convex Optimization: Theory and Application to Medical Decision-Making

计算机科学 人工智能 凸优化 数学优化 管理科学 正多边形 机器学习 心理学 知识管理 经济 数学 几何学
作者
Esmaeil Keyvanshokooh,Mohammad Zhalechian,Cong Shi,Mark P. Van Oyen,Pooyan Kazemian
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:5
标识
DOI:10.1287/mnsc.2019.03211
摘要

Optimizing the treatment regimen is a fundamental medical decision-making problem. This can be thought of as a two-dimensional decision-making problem with a nested structure because it involves determining both the optimal medication and its optimal dose. Identifying the most effective medication for an individual often poses considerable difficulty, and even when a suitable medication is ascertained, dosing it optimally remains a significant challenge. Making these two nested decisions necessitates the adaptive learning of a personalized disease progression control model. To address this problem, we propose a novel contextual multiarmed bandit model under a two-dimensional control with a nested structure. For this model, we develop a new joint contextual learning and optimization algorithm, termed the stochastic subgradient descent atop contextual multiarmed bandit (SGD-MAB) algorithm. It sequentially selects for a patient (i) the best medication based on their contextual information and (ii) the corresponding dose optimized over the prior history of those patients who received the same medication. We prove that it admits a sublinear regret, which is tight up to a logarithmic factor. Our regret analysis leverages the strengths of both contextual bandit approaches and online convex optimization techniques in a seamless fashion. We substantiate the practicality of SGD-MAB using clinical data on patients with hypertension and heightened cardiovascular risks. Our analysis indicates that SGD-MAB has the potential to surpass current practices. We benchmark several policies to show the advantages of our approach and offer critical insights. Our framework holds promise for various applications beyond healthcare that require nested decision-making. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the National Science Foundation (CMMI-1548201, CMMI-1634505) and the National Eye Institute (NIH Grant R01EY026641). Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2019.03211 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liang完成签到,获得积分10
1秒前
顺利的源智完成签到,获得积分10
2秒前
2秒前
战战兢兢的失眠完成签到 ,获得积分10
3秒前
Onewayvv完成签到,获得积分10
3秒前
文官华完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Cynthia完成签到 ,获得积分10
6秒前
千玺的小粉丝儿完成签到,获得积分10
9秒前
多情的寻真完成签到,获得积分10
11秒前
11秒前
dingding完成签到 ,获得积分10
11秒前
牢牛马完成签到 ,获得积分10
12秒前
huahua完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
当当完成签到 ,获得积分10
18秒前
儒雅老太完成签到,获得积分20
20秒前
iuhgnor完成签到,获得积分10
23秒前
weijiechi完成签到,获得积分10
25秒前
充电宝应助qiqi采纳,获得10
27秒前
June完成签到 ,获得积分10
27秒前
李栖迟完成签到 ,获得积分10
28秒前
luoqin完成签到 ,获得积分10
30秒前
Hello应助儒雅老太采纳,获得10
31秒前
32秒前
33秒前
量子星尘发布了新的文献求助10
34秒前
jh完成签到 ,获得积分10
37秒前
韭菜盒子发布了新的文献求助10
38秒前
40秒前
认真之槐完成签到 ,获得积分10
42秒前
42秒前
42秒前
李健应助科研通管家采纳,获得10
42秒前
42秒前
鱼鱼完成签到 ,获得积分10
43秒前
qiqi发布了新的文献求助10
43秒前
linger发布了新的文献求助10
47秒前
chen完成签到,获得积分10
49秒前
lht完成签到 ,获得积分10
49秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5128810
求助须知:如何正确求助?哪些是违规求助? 4331352
关于积分的说明 13494469
捐赠科研通 4167415
什么是DOI,文献DOI怎么找? 2284501
邀请新用户注册赠送积分活动 1285496
关于科研通互助平台的介绍 1226213