Tissue Clutter Filtering Methods in Ultrasound Localization Microscopy Based on Complex-valued Networks and Knowledge Distillation

杂乱 显微镜 超声波 超声成像 计算机科学 蒸馏 人工智能 声学 材料科学 生物医学工程 计算机视觉 生物系统 光学 物理 化学 工程类 色谱法 生物 雷达 电信
作者
Wenzhao Han,Wenjun Zhou,Lijie Huang,Jianwen Luo,Bo Peng
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2025.3544692
摘要

Ultrasound Localization Microscopy (ULM) is a blood flow imaging technique that utilizes micron-sized microbubbles (MBs) as contrast agents to achieve high-resolution microvessel reconstruction through precise localization and tracking of MBs. The accuracy of MB localization is critical for producing high-quality images, which makes tissue clutter filtering an essential step in ULM. Recent advances in deep learning have led to innovative methods for tissue clutter filtering, particularly those based on 3D convolution, which effectively capture the spatiotemporal features of MBs. These methods significantly improve upon traditional approaches by addressing issues such as lengthy inference time and limited flexibility. However, many deep learning techniques primarily focus on B-mode images and demonstrate lower efficiency. To overcome these limitations, this study proposes knowledge distillation for tissue clutter filtering to enhance filtering efficiency while maintaining performance. This study first develops a lightweight 2D complex-valued CNN (CL-UNet) as the teacher model, utilizing I/Q signal input. Subsequently, a 2D real-valued CNN (UNet-T) is developed as the student model, which uses envelope data as input. Feature-based knowledge distillation is applied to transfer knowledge from the teacher model to the student model (Guided UNet-T). All models are trained on simulated data and fine-tuned on in vivo data. The experimental results show that CL-UNet (I/Q, ours) demonstrates better filtering performance compared to the B-mode image-based approach on both simulated and in vivo data. Guided UNet-T outperforms both Singular Value Decomposition (SVD) and Random SVD (RSVD) in terms of both performance and speed, offering the best balance between filtering efficiency and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serenity完成签到 ,获得积分10
2秒前
冷山发布了新的文献求助10
2秒前
龙无赖完成签到,获得积分10
3秒前
香蕉觅云应助123采纳,获得10
5秒前
若冰发布了新的文献求助10
6秒前
6秒前
乐乐应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
Bebeans应助科研通管家采纳,获得20
7秒前
coolkid应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得30
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
JayL完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
orange2806完成签到 ,获得积分10
9秒前
10秒前
wzx完成签到,获得积分10
10秒前
芳芳反复完成签到,获得积分20
11秒前
12秒前
急着青春发布了新的文献求助10
12秒前
14秒前
王_完成签到,获得积分20
14秒前
15秒前
任我行发布了新的文献求助10
15秒前
JHcHuN发布了新的文献求助10
16秒前
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846818
求助须知:如何正确求助?哪些是违规求助? 3389330
关于积分的说明 10556797
捐赠科研通 3109705
什么是DOI,文献DOI怎么找? 1713870
邀请新用户注册赠送积分活动 825023
科研通“疑难数据库(出版商)”最低求助积分说明 775164