Novel Protein-Based Biomarkers of Out-of-hospital Sudden Cardiac Death After Myocardial Infarction

医学 射血分数 内科学 心脏病学 心肌梗塞 心源性猝死 人口 弗雷明翰风险评分 心力衰竭 疾病 环境卫生
作者
Maomao Zhang,Zhonghua Tong,Naixin Wang,Kaiyang Lin,Yafei Zhang,Dong-Ni Wang,Xiaoqi Wang,P Wang,Qiannan Yang,Yingjin Kong,Mengdi Wang,Jingxuan Cui,Zhuozhong Wang,Muhua Cao,Lulu Li,Ying Liu,Zhaoying Li,Shaohong Fang,Fan Zhang,Zhenwei Pan
出处
期刊:Circulation-arrhythmia and Electrophysiology [Lippincott Williams & Wilkins]
标识
DOI:10.1161/circep.124.013217
摘要

BACKGROUND: Early identification of out-of-hospital high-risk sudden cardiac death (SCD) after acute myocardial infarction is crucial for timely therapeutic interventions. However, left ventricular ejection fraction as a standalone clinical stratification tool has major limitations, necessitating improved risk stratification strategies. METHODS: Mass spectrometry measured 6592 peptides and 522 proteins, from which targeted proteomics identified the optimal protein combination to assess out-of-hospital SCD risk. ELISA validated its predictive value by comparing it with a clinical stratification tool (left ventricular ejection fraction ≤35%) and 2 reported models (risk score and out-of-hospital cardiac arrest score) in 3 case-control cohorts nested within diverse contemporary postinfarction populations. RESULTS: In the discovery cohort (105 SCD cases and 105 survivors), mass spectrometry discovered 44 differential proteins associated with SCD, unveiling early circulating features characterized by inflammatory response and complement activation in out-of-hospital SCD cases. Targeted proteomics identified the optimal SCD-warning 3-protein combination, including coronin-1A, haptoglobin, and CFD (complement factor D), to assess out-of-hospital SCD risk. An ELISA-based SCD-warning 3-protein combination model significantly outperformed left ventricular ejection fraction alone (C statistic: 0.752 versus 0.548; P <0.001) and improved their performance (ΔC statistic, 0.281; categorical net reclassification improvement, 0.095; continuous net reclassification improvement, 0.952; integrated discrimination improvement, 0.291). Similar incremental discrimination metrics were observed in 2 reported stratification models (risk score and out-of-hospital cardiac arrest score), particularly within the left ventricular ejection fraction-preserved population. These findings were repeatably validated in 2 independent cohorts (n=234 and 48, respectively). CFD inhibition protection for mortality and pro-malignant arrhythmias in acute myocardial infarction mice supported the biological plausibility of the critical protein in SCD-warning 3-protein combination. CONCLUSIONS: In high-risk individuals for out-of-hospital SCD, the SCD-warning 3-protein combination may contribute to enhanced early identification for timely intensive management. These findings suggest pivotal proteins for improving understanding SCD pathophysiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮摇伽发布了新的文献求助10
刚刚
1秒前
1秒前
Samaritan发布了新的文献求助10
2秒前
xinyue发布了新的文献求助10
2秒前
3秒前
4秒前
姚友进发布了新的文献求助10
4秒前
Dora发布了新的文献求助50
4秒前
酷酷隶完成签到,获得积分10
4秒前
什么都不会门门都挂科完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
wlscj应助神奇海螺采纳,获得20
6秒前
6秒前
Zzz发布了新的文献求助10
6秒前
6秒前
jiahongcao完成签到,获得积分10
7秒前
凉小远发布了新的文献求助10
7秒前
7秒前
早睡早起完成签到,获得积分10
7秒前
7秒前
xuexuezi发布了新的文献求助10
8秒前
8秒前
charles完成签到,获得积分10
9秒前
ding应助朝阳采纳,获得10
9秒前
心之所向完成签到,获得积分10
9秒前
双眼皮跳蚤完成签到,获得积分0
9秒前
jiahongcao发布了新的文献求助10
10秒前
许子健发布了新的文献求助10
11秒前
文献期待发布了新的文献求助10
11秒前
酷酷隶发布了新的文献求助10
11秒前
陈陈发布了新的文献求助10
11秒前
Nemo发布了新的文献求助10
11秒前
白开水完成签到 ,获得积分10
13秒前
仝艳婷发布了新的文献求助10
13秒前
hh完成签到 ,获得积分10
13秒前
小刘完成签到,获得积分20
13秒前
刘佳琦19947完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493