Facile Gram-Scale Production of Cu/Cu 2 O Core/Shell Nanoparticles Densely Embedded in a Porous Carbon Framework for Cost-Effective Peroxidase Mimicking

材料科学 聚乙烯吡咯烷酮 纳米技术 交货地点 纳米颗粒 多孔性 介孔材料 化学工程 催化作用 碳纤维 化学 有机化学 复合材料 复合数 工程类 生物 农学 高分子化学
作者
Yuzhen Cai,Zhanping Xiao,Tianqi Cheng,Bo Yuan,Yifan Cui,Jian Lin Chen,Yufei Zhao,Pi‐Tai Chou,Yung‐Kang Peng
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (26): 37577-37585 被引量:3
标识
DOI:10.1021/acsami.5c05766
摘要

Natural enzymes are efficient catalysts but face high costs and instability, leading to the development of artificial enzymes like nanozymes. While noble metals commonly demonstrate high peroxidase (POD)-like activity, their expense limits their practical use. In contrast, 3d transition metal oxides, though less active, are more cost-effective due to their natural abundance, with Cu(I) emerging as a promising candidate. However, maximizing POD-like activity in small-sized Cu2O nanoparticles (NPs) often requires complex synthetic processes and labor-intensive purification, making mass production challenging. To address these issues, it is crucial to develop POD nanozymes with simplified production methods that would reduce costs and facilitate their real-world applications. Herein, we present a straightforward and scalable method for preparing Cu/Cu2O core/shell NPs densely embedded within a porous carbon-based framework by calcining Cu precursor and polyvinylpyrrolidone (PVP) at elevated temperatures in nitrogen. The resulting samples with Cu/Cu2O NPs around 15 nm in size can be obtained at temperatures below 600 °C. Importantly, they can be used directly without purification, significantly reducing production costs compared to natural enzymes. The sample obtained at 300 °C, exhibiting the highest Cu(I) content, displays optimal POD-like activity and was further demonstrated in the detection of glutathione and glucose. This study is anticipated to guide the future development of scalable and cost-effective POD nanozymes for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
易yi发布了新的文献求助10
刚刚
刚刚
刚刚
Duckseid发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
wuji2077完成签到,获得积分10
2秒前
斯文败类应助晓晓来了采纳,获得10
2秒前
2秒前
2秒前
鹿梦发布了新的文献求助10
2秒前
江花朝完成签到,获得积分10
2秒前
kone发布了新的文献求助10
2秒前
3秒前
3秒前
jiaman1031完成签到,获得积分10
3秒前
余旮旮发布了新的文献求助10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
hbutsj完成签到,获得积分10
4秒前
4秒前
4秒前
崔崔发布了新的文献求助10
4秒前
小可爱发布了新的文献求助10
4秒前
PERI发布了新的文献求助10
4秒前
花花完成签到,获得积分10
5秒前
5秒前
复苏应助科研通管家采纳,获得10
5秒前
罗新燕完成签到,获得积分20
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
yangts2021发布了新的文献求助10
6秒前
韩XR发布了新的文献求助10
6秒前
脑洞疼应助科研通管家采纳,获得80
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590