亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FEGNet: A feature enhancement and guided network for infrared object detection in underground mines

过度拟合 特征(语言学) 计算机科学 背景(考古学) 目标检测 人工智能 红外线的 对象(语法) 计算机视觉 遥感 模式识别(心理学) 人工神经网络 地理 语言学 哲学 物理 考古 光学
作者
Lisha Huang,Xi Zhang,Miao Yu,Songyue Yang,Cao Xiao,Junzhou Meng
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:238 (8): 2292-2301 被引量:2
标识
DOI:10.1177/09544070231165627
摘要

Object detection plays an important role in underground intelligent vehicles and intelligent transportation systems. Due to the uneven light in underground mining scenarios, infrared cameras are one of the typical onboard sensors for environmental perception. Although object detection has been studied for decades, it still confronts the challenge of detecting infrared objects in underground mines. The contributing factors include weak and small objects in infrared images and similar environments in mining scenarios. In this paper, a Feature Enhancement and Guided Network (FEGNet) is proposed to address these problems. Based on the characteristics of infrared images, the feature enhancement module (FEM) preserves the image details from global and local perspectives to improve the discrimination of weak and small objects. To tackle the problem of overfitting caused by similar environments, a receptive-field-guided (RFG) backbone is proposed to learn multi-scale context and spatial information. The experimental results on the underground mining (UM) dataset demonstrate that the mAP of the proposed FEGNet achieves 86.1%, which is 4.6% higher than the state-of-the-art CNN-based network YOLOv7.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
哭泣灯泡完成签到,获得积分10
24秒前
每天都在掉头发完成签到,获得积分10
31秒前
32秒前
drhwang完成签到,获得积分10
37秒前
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
万能图书馆应助张张采纳,获得10
3分钟前
3分钟前
张张发布了新的文献求助10
4分钟前
在水一方应助huhu采纳,获得10
4分钟前
张张完成签到,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
huhu发布了新的文献求助10
5分钟前
ShishanXue完成签到 ,获得积分10
5分钟前
朴实的鞋子完成签到,获得积分20
5分钟前
溫蒂应助朴实的鞋子采纳,获得30
5分钟前
huhu完成签到,获得积分10
5分钟前
jhonnyhuang发布了新的文献求助10
5分钟前
科研通AI6应助jhonnyhuang采纳,获得10
6分钟前
慕青应助光能使者采纳,获得10
6分钟前
6分钟前
6分钟前
光能使者发布了新的文献求助10
6分钟前
李桂芳完成签到,获得积分10
6分钟前
隐形不凡完成签到,获得积分10
6分钟前
6分钟前
George完成签到,获得积分10
7分钟前
温不胜的破木吉他完成签到 ,获得积分10
7分钟前
Ting完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
乐乐应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617142
求助须知:如何正确求助?哪些是违规求助? 4701479
关于积分的说明 14913757
捐赠科研通 4750079
什么是DOI,文献DOI怎么找? 2549320
邀请新用户注册赠送积分活动 1512350
关于科研通互助平台的介绍 1474091