Prediction of intradialytic hypotension using pre-dialysis features—a deep learning–based artificial intelligence model

医学 逻辑回归 血液透析 随机森林 透析 血压 深度学习 会话(web分析) 内科学 人工智能 心脏病学 机器学习 计算机科学 万维网
作者
Hanbi Lee,Sung Joon Moon,Sung Woo Kim,Ji Won Min,Hoon Suk Park,Hye Eun Yoon,Young Soo Kim,Hyung Wook Kim,Chul Woo Yang,Sungjin Chung,Eun Sil Koh,Byung Ha Chung
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (10): 2310-2320 被引量:12
标识
DOI:10.1093/ndt/gfad064
摘要

Intradialytic hypotension (IDH) is a serious complication of hemodialysis (HD) that is associated with increased risks of cardiovascular morbidity and mortality. However, its accurate prediction remains a clinical challenge. The aim of this study was to develop a deep learning-based artificial intelligence (AI) model to predict IDH using pre-dialysis features.Data from 2007 patients with 943 220 HD sessions at seven university hospitals were used. The performance of the deep learning model was compared with three machine learning models (logistic regression, random forest and XGBoost).IDH occurred in 5.39% of all studied HD sessions. A lower pre-dialysis blood pressure (BP), and a higher ultrafiltration (UF) target rate and interdialytic weight gain in IDH sessions compared with non-IDH sessions, and the occurrence of IDH in previous sessions was more frequent among IDH sessions compared with non-IDH sessions. Matthews correlation coefficient and macro-averaged F1 score were used to evaluate both positive and negative prediction performances. Both values were similar in logistic regression, random forest, XGBoost and deep learning models, developed with data from a single session. When combining data from the previous three sessions, the prediction performance of the deep learning model improved and became superior to that of other models. The common top-ranked features for IDH prediction were mean systolic BP (SBP) during the previous session, UF target rate, pre-dialysis SBP, and IDH experience during the previous session.Our AI model predicts IDH accurately, suggesting it as a reliable tool for HD treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖喱酱发布了新的文献求助10
刚刚
helllxi发布了新的文献求助10
刚刚
Akim应助凌氏冯雯采纳,获得10
刚刚
WRZ完成签到 ,获得积分10
刚刚
刚刚
追寻的南风完成签到,获得积分10
刚刚
小刘完成签到,获得积分20
1秒前
快乐星球发布了新的文献求助10
2秒前
郭子完成签到,获得积分20
2秒前
慕薯殿焚完成签到,获得积分10
3秒前
3秒前
4秒前
飘逸问薇完成签到 ,获得积分10
4秒前
4秒前
四川南丁格尔完成签到,获得积分10
5秒前
慕青应助畅快忆安采纳,获得10
5秒前
6秒前
6秒前
李冬卿完成签到,获得积分10
6秒前
Hello应助贤惠的白开水采纳,获得10
7秒前
通关完成签到 ,获得积分10
7秒前
纯真抽屉完成签到,获得积分10
7秒前
7秒前
Anne完成签到,获得积分10
7秒前
大1完成签到,获得积分10
8秒前
。。。完成签到,获得积分10
8秒前
搜集达人应助江璃采纳,获得10
9秒前
rr发布了新的文献求助10
9秒前
wyp发布了新的文献求助10
10秒前
凯凯完成签到,获得积分10
10秒前
xiaozang完成签到,获得积分10
10秒前
11秒前
3131879775发布了新的文献求助10
11秒前
晚餐发布了新的文献求助10
12秒前
你大夫哥完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
稳稳完成签到,获得积分10
14秒前
Jim发布了新的文献求助10
14秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820351
求助须知:如何正确求助?哪些是违规求助? 3363257
关于积分的说明 10422060
捐赠科研通 3081685
什么是DOI,文献DOI怎么找? 1695190
邀请新用户注册赠送积分活动 814957
科研通“疑难数据库(出版商)”最低求助积分说明 768692