FAM3L: Feature-Aware Multi-Modal Metric Learning for Integrative Survival Analysis of Human Cancers

公制(单位) 特征(语言学) 计算机科学 模式识别(心理学) 人工智能 数据挖掘 语言学 运营管理 哲学 经济
作者
Wei Shao,Jianxin Liu,Yingli Zuo,Shile Qi,Honghai Hong,Jianpeng Sheng,Qi Zhu,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2552-2565 被引量:11
标识
DOI:10.1109/tmi.2023.3262024
摘要

Survival analysis is to estimate the survival time for an individual or a group of patients, which is a valid solution for cancer treatments. Recent studies suggested that the integrative analysis of histopathological images and genomic data can better predict the survival of cancer patients than simply using single bio-marker, for different bio-markers may provide complementary information. However, for the given multi-modal data that may contain irrelevant or redundant features, it is still challenge to design a distance metric that can simultaneously discover significant features and measure the difference of survival time among different patients. To solve this issue, we propose a Feature-Aware Multi-modal Metric Learning method (FAM3L), which not only learns the metric for distance constraints on patients' survival time, but also identifies important images and genomic features for survival analysis. Specifically, for each modality of data, we firstly design one feature-aware metric that can be decoupled into a traditional distance metric and a diagonal weight for important feature identification. Then, in order to explore the complex correlation across multiple modality data, we apply Hilbert-Schmidt Independence Criterion (HSIC) to jointly learn multiple metrics. Finally, based on the learned distance metrics, we apply the Cox proportional hazards model for prognosis prediction. We evaluate the performance of our proposed FAM3L method on three cancer cohorts derived from The Cancer Genome Atlas (TCGA), the experimental results demonstrate that our method can not only achieve superior performance for cancer prognosis, but also identify meaningful image and genomic features correlating strongly with cancer survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溜溜发布了新的文献求助10
刚刚
刚刚
远道完成签到 ,获得积分10
刚刚
胡胡完成签到 ,获得积分10
1秒前
1秒前
ZXF应助小慧儿采纳,获得10
2秒前
诚心的傲芙完成签到,获得积分10
2秒前
客官们帮帮忙完成签到,获得积分10
2秒前
EvaHo完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
木九黎完成签到,获得积分10
5秒前
等待春天发布了新的文献求助10
6秒前
6秒前
Owen应助平淡的洪纲采纳,获得10
6秒前
6秒前
快乐友灵完成签到,获得积分10
7秒前
李健应助kitten采纳,获得10
7秒前
Jasper应助研友_Z6kNA8采纳,获得10
7秒前
哎呦喂发布了新的文献求助50
7秒前
SweetJoy应助科研通管家采纳,获得10
7秒前
大雨发布了新的文献求助10
7秒前
深情安青应助科研通管家采纳,获得10
8秒前
liu应助科研通管家采纳,获得10
8秒前
8秒前
cccdida应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
清风完成签到,获得积分10
9秒前
jnshen完成签到 ,获得积分10
9秒前
YuanLi发布了新的文献求助30
9秒前
拉斐尔217完成签到,获得积分10
9秒前
totoro完成签到,获得积分10
9秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4093339
求助须知:如何正确求助?哪些是违规求助? 3632045
关于积分的说明 11511743
捐赠科研通 3342780
什么是DOI,文献DOI怎么找? 1837309
邀请新用户注册赠送积分活动 905012
科研通“疑难数据库(出版商)”最低求助积分说明 822852