亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FAM3L: Feature-Aware Multi-Modal Metric Learning for Integrative Survival Analysis of Human Cancers

公制(单位) 特征(语言学) 计算机科学 模式识别(心理学) 人工智能 数据挖掘 语言学 运营管理 哲学 经济
作者
Wei Shao,Jianxin Liu,Yingli Zuo,Shile Qi,Honghai Hong,Jianpeng Sheng,Qi Zhu,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2552-2565 被引量:11
标识
DOI:10.1109/tmi.2023.3262024
摘要

Survival analysis is to estimate the survival time for an individual or a group of patients, which is a valid solution for cancer treatments. Recent studies suggested that the integrative analysis of histopathological images and genomic data can better predict the survival of cancer patients than simply using single bio-marker, for different bio-markers may provide complementary information. However, for the given multi-modal data that may contain irrelevant or redundant features, it is still challenge to design a distance metric that can simultaneously discover significant features and measure the difference of survival time among different patients. To solve this issue, we propose a Feature-Aware Multi-modal Metric Learning method (FAM3L), which not only learns the metric for distance constraints on patients' survival time, but also identifies important images and genomic features for survival analysis. Specifically, for each modality of data, we firstly design one feature-aware metric that can be decoupled into a traditional distance metric and a diagonal weight for important feature identification. Then, in order to explore the complex correlation across multiple modality data, we apply Hilbert-Schmidt Independence Criterion (HSIC) to jointly learn multiple metrics. Finally, based on the learned distance metrics, we apply the Cox proportional hazards model for prognosis prediction. We evaluate the performance of our proposed FAM3L method on three cancer cohorts derived from The Cancer Genome Atlas (TCGA), the experimental results demonstrate that our method can not only achieve superior performance for cancer prognosis, but also identify meaningful image and genomic features correlating strongly with cancer survival.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
好耶发布了新的文献求助10
13秒前
27秒前
nina完成签到 ,获得积分10
55秒前
56秒前
1分钟前
1分钟前
橙子发布了新的文献求助10
1分钟前
1分钟前
腼腆的小熊猫完成签到 ,获得积分10
1分钟前
1分钟前
Havitya发布了新的文献求助10
1分钟前
斯文败类应助妩媚的幼丝采纳,获得10
1分钟前
1分钟前
妩媚的幼丝应助文件撤销了驳回
1分钟前
可爱的函函应助Gaopkid采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
Gaopkid完成签到,获得积分20
2分钟前
2分钟前
Gaopkid发布了新的文献求助10
2分钟前
沉默的依霜完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
今后应助天边道士采纳,获得10
4分钟前
4分钟前
科研通AI2S应助cccc1111111采纳,获得10
5分钟前
6分钟前
YP_024发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
隐形曼青应助YP_024采纳,获得10
6分钟前
WEN发布了新的文献求助10
6分钟前
6分钟前
李爱国应助科研通管家采纳,获得10
6分钟前
WEN完成签到,获得积分10
6分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808036
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360120
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810348
科研通“疑难数据库(出版商)”最低求助积分说明 766033