Machine Learning Modeling Of SiRNA Structure-Potency Relationship With Applications Against Sars-Cov-2 Spike Gene

RNA干扰 化学信息学 小干扰RNA 机器学习 药物发现 人工智能 计算生物学 计算机科学 支持向量机 药物开发 效力 药物重新定位 数量结构-活动关系 重新调整用途 生物信息学 药品 生物 药理学 核糖核酸 基因 体外 生态学 生物化学
作者
Damilola Oshunyinka
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.12232
摘要

The pharmaceutical Research and development (R&D) process is lengthy and costly, taking nearly a decade to bring a new drug to the market. However, advancements in biotechnology, computational methods, and machine learning algorithms have the potential to revolutionize drug discovery, speeding up the process and improving patient outcomes. The COVID-19 pandemic has further accelerated and deepened the recognition of the potential of these techniques, especially in the areas of drug repurposing and efficacy predictions. Meanwhile, non-small molecule therapeutic modalities such as cell therapies, monoclonal antibodies, and RNA interference (RNAi) technology have gained importance due to their ability to target specific disease pathways and/or patient populations. In the field of RNAi, many experiments have been carried out to design and select highly efficient siRNAs. However, the established patterns for efficient siRNAs are sometimes contradictory and unable to consistently determine the most potent siRNA molecules against a target mRNA. Thus, this paper focuses on developing machine learning models based on the cheminformatics representation of the nucleotide composition (i.e. AUTGC) of siRNA to predict their potency and aid the selection of the most efficient siRNAs for further development. The PLS (Partial Least Square) and SVR (Support Vector Regression) machine learning models built in this work outperformed previously published models. These models can help in predicting siRNA potency and aid in selecting the best siRNA molecules for experimental validation and further clinical development. The study has demonstrated the potential of AI/machine learning models to help expedite siRNA-based drug discovery including the discovery of potent siRNAs against SARS-CoV-2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助大白哉采纳,获得10
刚刚
曼曼发布了新的文献求助10
2秒前
5秒前
tpkkcdd完成签到,获得积分10
5秒前
万能图书馆应助XXXX采纳,获得10
6秒前
高高完成签到,获得积分10
6秒前
Dante发布了新的文献求助10
6秒前
6秒前
曼曼完成签到,获得积分10
9秒前
10秒前
无奈的萍发布了新的文献求助30
10秒前
grzzz发布了新的文献求助10
10秒前
123完成签到 ,获得积分10
11秒前
Dante完成签到,获得积分10
13秒前
16秒前
相机大喊大叫完成签到,获得积分10
16秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
17秒前
18秒前
XXXX发布了新的文献求助10
20秒前
21秒前
852应助剪影改采纳,获得10
23秒前
23秒前
Wcy发布了新的文献求助10
25秒前
CipherSage应助为念采纳,获得10
25秒前
爱学习发布了新的文献求助10
27秒前
乐怡日尧发布了新的文献求助10
27秒前
Jasper应助Wcy采纳,获得10
30秒前
许金钗完成签到,获得积分10
33秒前
35秒前
酷波er应助乐怡日尧采纳,获得10
37秒前
40秒前
41秒前
hhhhzt发布了新的文献求助10
41秒前
43秒前
脑洞疼应助开放宛儿采纳,获得10
43秒前
YOLO完成签到 ,获得积分10
44秒前
剪影改完成签到,获得积分10
44秒前
汉堡包应助jfz采纳,获得10
44秒前
候默——辛普森完成签到,获得积分20
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782204
求助须知:如何正确求助?哪些是违规求助? 3327628
关于积分的说明 10232604
捐赠科研通 3042558
什么是DOI,文献DOI怎么找? 1670052
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758854