FD-Net: Feature Distillation Network for Oral Squamous Cell Carcinoma Lymph Node Segmentation in Hyperspectral Imagery

高光谱成像 分割 阶段(地层学) 计算机科学 人工智能 特征(语言学) H&E染色 淋巴结 癌症 模式识别(心理学) 图像分割 节点(物理) 医学 病理 内科学 染色 生物 古生物学 语言学 哲学 结构工程 工程类
作者
Xueyu Zhang,Qingxiang Li,Wei Li,Yuxing Guo,Jianyun Zhang,Chuan-bin Guo,Kan Chang,Nigel H. Lovell
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1552-1563 被引量:19
标识
DOI:10.1109/jbhi.2024.3350245
摘要

Oral squamous cell carcinoma (OSCC) has the characteristics of early regional lymph node metastasis. OSCC patients often have poor prognoses and low survival rates due to cervical lymph metastases. Therefore, it is necessary to rely on a reasonable screening method to quickly judge the cervical lymph metastastic condition of OSCC patients and develop appropriate treatment plans. In this study, the widely used pathological sections with hematoxylin-eosin (H&E) staining are taken as the target, and combined with the advantages of hyperspectral imaging technology, a novel diagnostic method for identifying OSCC lymph node metastases is proposed. The method consists of a learning stage and a decision-making stage, focusing on cancer and non-cancer nuclei, gradually completing the lesions' segmentation from coarse to fine, and achieving high accuracy. In the learning stage, the proposed feature distillation-Net (FD-Net) network is developed to segment the cancerous and non-cancerous nuclei. In the decision-making stage, the segmentation results are post-processed, and the lesions are effectively distinguished based on the prior. Experimental results demonstrate that the proposed FD-Net is very competitive in the OSCC hyperspectral medical image segmentation task. The proposed FD-Net method performs best on the seven segmentation evaluation indicators: MIoU, OA, AA, SE, CSI, GDR, and DICE. Among these seven evaluation indicators, the proposed FD-Net method is 1.75%, 1.27%, 0.35%, 1.9%, 0.88%, 4.45%, and 1.98% higher than the DeepLab V3 method, which ranks second in performance, respectively. In addition, the proposed diagnosis method of OSCC lymph node metastasis can effectively assist pathologists in disease screening and reduce the workload of pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oMayii发布了新的文献求助10
1秒前
快乐的元霜完成签到,获得积分10
2秒前
呆一起完成签到,获得积分10
2秒前
石破天惊完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
盛施霏完成签到,获得积分10
4秒前
卡乐瑞咩吹可完成签到,获得积分10
4秒前
无语的麦片完成签到 ,获得积分10
4秒前
Ningxin完成签到,获得积分10
5秒前
成就钧完成签到,获得积分10
5秒前
chen发布了新的文献求助10
6秒前
平平无奇种花小天才完成签到,获得积分10
6秒前
一一完成签到,获得积分10
6秒前
bnvgx发布了新的文献求助10
7秒前
zylt50完成签到,获得积分10
7秒前
wanting发布了新的文献求助10
7秒前
orangelion完成签到,获得积分10
7秒前
落后的夜阑完成签到,获得积分10
7秒前
7秒前
翁雁丝完成签到 ,获得积分10
8秒前
自律的晏子完成签到 ,获得积分10
8秒前
8秒前
李希有发布了新的文献求助10
8秒前
李爱国应助sanyecai采纳,获得10
9秒前
kaka1981sdu完成签到,获得积分10
9秒前
贺兰鸵鸟完成签到,获得积分10
9秒前
昵称发布了新的文献求助10
10秒前
可爱的函函应助Chenmengyi采纳,获得10
10秒前
WCM完成签到,获得积分10
10秒前
MaoSen发布了新的文献求助30
11秒前
pluto应助乔路采纳,获得10
11秒前
高分子物理不会完成签到,获得积分10
11秒前
Jenifer完成签到 ,获得积分10
11秒前
chen完成签到,获得积分10
12秒前
sunny完成签到,获得积分10
12秒前
科研通AI5应助廿秦采纳,获得10
12秒前
吉吉完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
履带车辆的设计与计算 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4486632
求助须知:如何正确求助?哪些是违规求助? 3941651
关于积分的说明 12222880
捐赠科研通 3598019
什么是DOI,文献DOI怎么找? 1978879
邀请新用户注册赠送积分活动 1015757
科研通“疑难数据库(出版商)”最低求助积分说明 908992