Fabric defect image generation method based on the dual-stage W-net generative adversarial network

网(多面体) 图像(数学) 生成语法 对偶(语法数字) 深度学习 卷积神经网络 生成对抗网络 相似性(几何) 人工智能 人工神经网络 任务(项目管理) 计算机科学 机器学习 模式识别(心理学) 工程类 数学 几何学 艺术 文学类 系统工程
作者
Xuejuan Hu,Yifei Liang,Hengliang Wang,Yadan Tan,Shiqian Liu,Fudong Pan,Qingyang Wu,Zhengdi He
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:94 (13-14): 1543-1557 被引量:2
标识
DOI:10.1177/00405175241233942
摘要

Due to the intricate and diverse nature of textile defects, detecting them poses an exceptionally challenging task. In comparison with conventional defect detection methods, deep learning-based defect detection methods generally exhibit superior precision. However, utilizing deep learning for defect detection requires a substantial volume of training data, which can be particularly challenging to accumulate for textile flaws. To augment the fabric defect dataset and enhance fabric defect detection accuracy, we propose a fabric defect image generation method based on Pix2Pix generative adversarial network. This approach devises a novel dual-stage W-net generative adversarial network. By increasing the network depth, this model can effectively extract intricate textile image features, thereby enhancing its ability to expand information sharing capacity. The dual-stage W-net generative adversarial network allows generating desired defects on defect-free textile images. We conduct quality assessment of the generated fabric defect images resulting in peak signal-to-noise ratio and structural similarity values exceeding 30 and 0.930, respectively, and a learned perceptual image patch similarity value no greater than 0.085, demonstrating the effectiveness of fabric defect data augmentation. The effectiveness of dual-stage W-net generative adversarial network is established through multiple comparative experiments evaluating the generated images. By examining the detection performance before and after data augmentation, the results demonstrate that mean average precision improves by 6.13% and 14.57% on YOLO V5 and faster recurrent convolutional neural networks detection models, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧亦竹完成签到,获得积分10
刚刚
1秒前
yan完成签到,获得积分10
1秒前
xhy发布了新的文献求助10
1秒前
充电宝应助ray采纳,获得10
1秒前
1秒前
jin_strive完成签到,获得积分10
1秒前
1秒前
花丛完成签到,获得积分10
1秒前
1秒前
2秒前
萌宝发布了新的文献求助10
2秒前
luwei完成签到,获得积分20
3秒前
小杰瑞发布了新的文献求助10
3秒前
dyfsj完成签到,获得积分10
3秒前
宁方芳完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
好好好发布了新的文献求助10
4秒前
paojiao不辣发布了新的文献求助10
5秒前
机灵水卉完成签到 ,获得积分10
5秒前
晏子完成签到,获得积分10
5秒前
青思发布了新的文献求助10
5秒前
2049510053发布了新的文献求助10
5秒前
yangbin710发布了新的文献求助10
5秒前
拼搏的惮发布了新的文献求助10
6秒前
dinglingling发布了新的文献求助10
6秒前
小穆发布了新的文献求助10
6秒前
露似珍珠月似弓完成签到,获得积分10
6秒前
CodeCraft应助积极向上采纳,获得10
6秒前
WANG发布了新的文献求助10
7秒前
学者宫Sir完成签到,获得积分10
7秒前
宁方芳发布了新的文献求助10
8秒前
Tian发布了新的文献求助10
8秒前
8秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805997
求助须知:如何正确求助?哪些是违规求助? 3350835
关于积分的说明 10351617
捐赠科研通 3066714
什么是DOI,文献DOI怎么找? 1684126
邀请新用户注册赠送积分活动 809309
科研通“疑难数据库(出版商)”最低求助积分说明 765432