miRNAs in cerebrospinal fluid associated with Alzheimer's disease: A systematic review and pathway analysis using a data mining and machine learning approach

小RNA 脑脊液 疾病 阿尔茨海默病 生物信息学 医学 神经科学 计算生物学 计算机科学 生物 病理 生物化学 基因
作者
Jéssica Diniz Pereira,Lívia Cristina Ribeiro Teixeira,Izabela Mamede,Michelle Teodoro Alves,Paulo Caramelli,Marcelo R. Luizon,Adriano Veloso,Karina Braga Gomes
出处
期刊:Journal of Neurochemistry [Wiley]
卷期号:168 (6): 977-994 被引量:1
标识
DOI:10.1111/jnc.16060
摘要

Abstract Alzheimer's disease (AD) is the most common type and accounts for 60%–70% of the reported cases of dementia. MicroRNAs (miRNAs) are small non‐coding RNAs that play a crucial role in gene expression regulation. Although the diagnosis of AD is primarily clinical, several miRNAs have been associated with AD and considered as potential markers for diagnosis and progression of AD. We sought to match AD‐related miRNAs in cerebrospinal fluid (CSF) found in the GeoDataSets, evaluated by machine learning, with miRNAs listed in a systematic review, and a pathway analysis. Using machine learning approaches, we identified most differentially expressed miRNAs in Gene Expression Omnibus (GEO), which were validated by the systematic review, using the acronym PECO—Population (P): Patients with AD, Exposure (E): expression of miRNAs, Comparison (C): Healthy individuals, and Objective (O): miRNAs differentially expressed in CSF. Additionally, pathway enrichment analysis was performed to identify the main pathways involving at least four miRNAs selected. Four miRNAs were identified for differentiating between patients with and without AD in machine learning combined to systematic review, and followed the pathways analysis: miRNA‐30a‐3p, miRNA‐193a‐5p, miRNA‐143‐3p, miRNA‐145‐5p. The pathways epidermal growth factor, MAPK, TGF‐beta and ATM‐dependent DNA damage response, were regulated by these miRNAs, but only the MAPK pathway presented higher relevance after a randomic pathway analysis. These findings have the potential to assist in the development of diagnostic tests for AD using miRNAs as biomarkers, as well as provide understanding of the relationship between different pathophysiological mechanisms of AD. image
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zhz完成签到,获得积分20
2秒前
3秒前
小蘑菇应助胡桃夹子采纳,获得10
3秒前
4秒前
4秒前
Rick发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
英姑应助曦小蕊采纳,获得10
6秒前
7秒前
7秒前
Kyrie发布了新的文献求助10
7秒前
8秒前
謓言发布了新的文献求助10
8秒前
dfghjkl发布了新的文献求助10
9秒前
00K发布了新的文献求助10
10秒前
怕黑剑身发布了新的文献求助10
10秒前
科研宇发布了新的文献求助10
10秒前
zyl发布了新的文献求助10
11秒前
jeffgong关注了科研通微信公众号
11秒前
12秒前
糖糖科研顺利呀完成签到 ,获得积分10
13秒前
17秒前
fant发布了新的文献求助10
17秒前
17秒前
shanage应助zyl采纳,获得10
19秒前
20秒前
科研宇完成签到,获得积分10
20秒前
买了束花完成签到,获得积分10
21秒前
乔一发布了新的文献求助10
21秒前
23秒前
饼Xinx完成签到,获得积分10
23秒前
凉茶完成签到,获得积分10
24秒前
25秒前
所所应助我不是胆小鬼采纳,获得10
25秒前
大模型应助00K采纳,获得10
26秒前
27秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050149
求助须知:如何正确求助?哪些是违规求助? 3588153
关于积分的说明 11402314
捐赠科研通 3314655
什么是DOI,文献DOI怎么找? 1823262
邀请新用户注册赠送积分活动 895332
科研通“疑难数据库(出版商)”最低求助积分说明 816731