Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation

风险分析(工程) 利益相关者 计算机科学 新兴技术 系统工程 工作流程 过程管理 业务 工程类 政治学 人工智能 数据库 公共关系
作者
Mohamed Ateia,Haoran Wei,Silvana Andreescu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (6): 2636-2651 被引量:22
标识
DOI:10.1021/acs.est.3c09889
摘要

Ensuring water quality and safety requires the effective detection of emerging contaminants, which present significant risks to both human health and the environment. Field deployable low-cost sensors provide solutions to detect contaminants at their source and enable large-scale water quality monitoring and management. Unfortunately, the availability and utilization of such sensors remain limited. This Perspective examines current sensing technologies for detecting emerging contaminants and analyzes critical barriers, such as high costs, lack of reliability, difficulties in implementation in real-world settings, and lack of stakeholder involvement in sensor design. These technical and nontechnical barriers severely hinder progression from proof-of-concepts and negatively impact user experience factors such as ease-of-use and actionability using sensing data, ultimately affecting successful translation and widespread adoption of these technologies. We provide examples of specific sensing systems and explore key strategies to address the remaining scientific challenges that must be overcome to translate these technologies into the field such as improving sensitivity, selectivity, robustness, and performance in real-world water environments. Other critical aspects such as tailoring research to meet end-users' requirements, integrating cost considerations and consumer needs into the early prototype design, establishing standardized evaluation and validation protocols, fostering academia-industry collaborations, maximizing data value by establishing data sharing initiatives, and promoting workforce development are also discussed. The Perspective describes a set of guidelines for the development, translation, and implementation of water quality sensors to swiftly and accurately detect, analyze, track, and manage contamination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
体贴花卷发布了新的文献求助10
2秒前
2秒前
2秒前
独孤骄子发布了新的文献求助10
3秒前
科研通AI5应助舒适路人采纳,获得30
4秒前
研友_LBRPOL完成签到,获得积分10
4秒前
123关闭了123文献求助
5秒前
和敬清寂发布了新的文献求助10
5秒前
yc完成签到,获得积分10
6秒前
7秒前
Danqing发布了新的文献求助10
7秒前
8秒前
10秒前
11秒前
科研通AI5应助开朗的大叔采纳,获得10
12秒前
Wang发布了新的文献求助10
12秒前
小二郎应助LBF采纳,获得10
13秒前
121314wld发布了新的文献求助10
13秒前
pangpang发布了新的文献求助10
13秒前
lay完成签到,获得积分10
13秒前
14秒前
hyshen发布了新的文献求助10
14秒前
JY发布了新的文献求助10
14秒前
bkagyin应助舒适路人采纳,获得10
16秒前
科研通AI5应助夜无疆采纳,获得10
17秒前
yuzu完成签到,获得积分10
19秒前
20秒前
乐乐应助妮妮采纳,获得10
21秒前
烟花应助张凤采纳,获得10
21秒前
21秒前
Danqing完成签到,获得积分10
21秒前
jian完成签到,获得积分10
21秒前
星辰大海应助wcf采纳,获得10
23秒前
迟迟发布了新的文献求助10
25秒前
Hello应助眼睛大善斓采纳,获得10
25秒前
黄春容发布了新的文献求助10
26秒前
雨渺清空完成签到 ,获得积分10
26秒前
元安南完成签到 ,获得积分10
26秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784501
求助须知:如何正确求助?哪些是违规求助? 3329665
关于积分的说明 10242951
捐赠科研通 3045037
什么是DOI,文献DOI怎么找? 1671570
邀请新用户注册赠送积分活动 800409
科研通“疑难数据库(出版商)”最低求助积分说明 759391