Dynamic Offloading Based on Meta Deep Reinforcement Learning and Load Prediction in Smart Home Edge Computing

强化学习 计算机科学 边缘计算 GSM演进的增强数据速率 人工智能 分布式计算
作者
Mingchu Li,Shuai Li,Wanying Qi
标识
DOI:10.1007/978-3-031-54521-4_23
摘要

In the edge computing enabled smart home scenario. Various smart home devices generate a large number of computing tasks, and users can offload these tasks to servers or perform them locally. Offloading to the server will result in lower delay, but it will also require paying the corresponding offloading cost. Therefore, users need to consider the low delay and additional costs caused by offloading. Different users have different trade-offs between latency and offload costs at different times. If the trade-off is set as a fixed hyperparameter, it will give users a poor experience. In the case of dynamic trade-offs, the model may have difficulty adapting to arrive at an optimal offloading decision. By jointly optimizing the task delay and offloading cost, We model it as a long-term cost minimization problem under dynamic trade-off (DT-LCMP). To solve the problem, we propose an offloading algorithm based on multi-agent meta deep reinforcement learning and load prediction (MAMRL-L). Combined with the idea of meta-learning, the DDQN method is used to train the network. By training the sampling data in different environments, the agent can adapt to the dynamic environment quickly. In order to improve the performance of the model, LSTNet is used to predict the load level of the next slot server in real time. The simulation results show that our algorithm has higher performance than the existing algorithms and benchmark algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
只喝牛奶不喝酒完成签到,获得积分10
1秒前
1秒前
杨德凯完成签到,获得积分10
1秒前
1秒前
狂野白梅完成签到,获得积分10
1秒前
2秒前
小懒虫完成签到,获得积分10
2秒前
2秒前
3秒前
张祖伦发布了新的文献求助10
4秒前
111完成签到,获得积分10
4秒前
小蘑菇应助味道采纳,获得10
5秒前
出口成章发布了新的文献求助10
5秒前
九日发布了新的文献求助10
5秒前
6秒前
1223完成签到,获得积分20
6秒前
6秒前
小灵通完成签到,获得积分10
6秒前
cczy发布了新的文献求助10
7秒前
8秒前
linnnn发布了新的文献求助10
8秒前
随便完成签到,获得积分10
9秒前
9秒前
股价发布了新的文献求助10
9秒前
老实觅松发布了新的文献求助10
9秒前
gggggggd完成签到,获得积分20
10秒前
hanxiaoxin发布了新的文献求助10
10秒前
11秒前
march_happy发布了新的文献求助10
11秒前
上官若男应助舒适路人采纳,获得10
12秒前
12秒前
12秒前
chaijy87完成签到,获得积分10
12秒前
鱼不鱼完成签到,获得积分20
12秒前
威武的匕发布了新的文献求助10
13秒前
在水一方应助Sidous_采纳,获得10
13秒前
摸鱼仙人完成签到,获得积分10
13秒前
无花果应助神勇小蜜蜂采纳,获得10
14秒前
江鹿柒柒发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141