Dynamic Offloading Based on Meta Deep Reinforcement Learning and Load Prediction in Smart Home Edge Computing

强化学习 计算机科学 边缘计算 GSM演进的增强数据速率 人工智能 分布式计算
作者
Mingchu Li,Shuai Li,Wanying Qi
标识
DOI:10.1007/978-3-031-54521-4_23
摘要

In the edge computing enabled smart home scenario. Various smart home devices generate a large number of computing tasks, and users can offload these tasks to servers or perform them locally. Offloading to the server will result in lower delay, but it will also require paying the corresponding offloading cost. Therefore, users need to consider the low delay and additional costs caused by offloading. Different users have different trade-offs between latency and offload costs at different times. If the trade-off is set as a fixed hyperparameter, it will give users a poor experience. In the case of dynamic trade-offs, the model may have difficulty adapting to arrive at an optimal offloading decision. By jointly optimizing the task delay and offloading cost, We model it as a long-term cost minimization problem under dynamic trade-off (DT-LCMP). To solve the problem, we propose an offloading algorithm based on multi-agent meta deep reinforcement learning and load prediction (MAMRL-L). Combined with the idea of meta-learning, the DDQN method is used to train the network. By training the sampling data in different environments, the agent can adapt to the dynamic environment quickly. In order to improve the performance of the model, LSTNet is used to predict the load level of the next slot server in real time. The simulation results show that our algorithm has higher performance than the existing algorithms and benchmark algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
小豆豆发布了新的文献求助10
刚刚
lxx发布了新的文献求助10
1秒前
梦成发布了新的文献求助10
2秒前
2秒前
2秒前
一八四完成签到,获得积分10
3秒前
flash发布了新的文献求助10
3秒前
朱瑶君完成签到,获得积分10
4秒前
6秒前
无聊完成签到,获得积分10
6秒前
思源应助gustavo采纳,获得10
7秒前
7秒前
7秒前
Tourist应助lxx采纳,获得10
8秒前
大模型应助张张张采纳,获得10
8秒前
科研通AI2S应助朱瑶君采纳,获得10
8秒前
xhd2814完成签到,获得积分20
9秒前
9秒前
zjm发布了新的文献求助30
9秒前
田様应助Zzh采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
华仔应助Adelinelili采纳,获得10
12秒前
慕青应助NNUsusan采纳,获得10
15秒前
16秒前
18秒前
19秒前
活力的曼波完成签到,获得积分10
19秒前
gustavo发布了新的文献求助10
19秒前
20秒前
壮观从云完成签到,获得积分10
21秒前
111完成签到,获得积分10
22秒前
hudaodao发布了新的文献求助10
22秒前
领导范儿应助巧语采纳,获得10
22秒前
MIKEY发布了新的文献求助10
23秒前
科研通AI6应助yueyueyue采纳,获得10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074673
求助须知:如何正确求助?哪些是违规求助? 4294686
关于积分的说明 13382020
捐赠科研通 4116171
什么是DOI,文献DOI怎么找? 2254166
邀请新用户注册赠送积分活动 1258719
关于科研通互助平台的介绍 1191640