Low-Dose CT Image Super-resolution Network with Noise Inhibition Based on Feedback Feature Distillation Mechanism

计算机科学 人工智能 计算机视觉 特征(语言学) 降噪 缩放 杠杆(统计) 卷积神经网络 感兴趣区域 模式识别(心理学) 工程类 哲学 语言学 石油工程 镜头(地质)
作者
Jianning Chi,Xiaolin Wei,Zhiyi Sun,Yongming Yang,Bin Yang
标识
DOI:10.1007/s10278-024-00979-1
摘要

Low-dose computed tomography (LDCT) has been widely used in medical diagnosis. In practice, doctors often zoom in on LDCT slices for clearer lesions and issues, while, a simple zooming operation fails to suppress low-dose artifacts, leading to distorted details. Therefore, numerous LDCT super-resolution (SR) methods have been proposed to promote the quality of zooming without the increase of the dose in CT scanning. However, there are still some drawbacks that need to be addressed in existing methods. First, the region of interest (ROI) is not emphasized due to the lack of guidance in the reconstruction process. Second, the convolutional blocks extracting fix-resolution features fail to concentrate on the essential multi-scale features. Third, a single SR head cannot suppress the residual artifacts. To address these issues, we propose an LDCT CT joint SR and denoising reconstruction network. Our proposed network consists of global dual-guidance attention fusion modules (GDAFMs) and multi-scale anastomosis blocks (MABs). The GDAFM directs the network to focus on ROI by fusing the extra mask guidance and average CT image guidance, while the MAB introduces hierarchical features through anastomosis connections to leverage multi-scale features and promote the feature representation ability. To suppress radial residual artifacts, we optimize our network using the feedback feature distillation mechanism (FFDM) which shares the backbone to learn features corresponding to the denoising task. We apply the proposed method to the 3D-IRCADB and PANCREAS datasets to evaluate its ability on LDCT image SR reconstruction. The experimental results compared with state-of-the-art methods illustrate the superiority of our approach with respect to peak signal-to-noise (PSNR), structural similarity (SSIM), and qualitative observations. Our proposed LDCT joint SR and denoising reconstruction network has been extensively evaluated through ablation, quantitative, and qualitative experiments. The results demonstrate that our method can recover noise-free and detail-sharp images, resulting in better reconstruction results. Code is available at https://github.com/neu-szy/ldct_sr_dn_w_ffdm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Shandongdaxiu采纳,获得10
3秒前
羽羽发布了新的文献求助10
3秒前
777777发布了新的文献求助10
4秒前
辣目童子完成签到 ,获得积分10
7秒前
星辰大海应助杨惊蛰采纳,获得10
9秒前
土豪的鸿煊完成签到,获得积分10
9秒前
华仔应助早早采纳,获得10
10秒前
777777完成签到,获得积分10
12秒前
orixero应助羽羽采纳,获得10
15秒前
Diamond完成签到 ,获得积分10
16秒前
悟123完成签到 ,获得积分10
16秒前
隐形曼青应助燕子采纳,获得10
16秒前
九九完成签到,获得积分10
17秒前
yui完成签到,获得积分10
21秒前
LXL完成签到,获得积分10
23秒前
24秒前
27秒前
Lucas应助安详的未来采纳,获得10
27秒前
最好的完成签到,获得积分10
27秒前
小不正经完成签到 ,获得积分10
27秒前
小小鱼完成签到,获得积分10
28秒前
yui发布了新的文献求助10
28秒前
追逐123完成签到 ,获得积分10
29秒前
29秒前
科研通AI2S应助eeeee采纳,获得10
29秒前
29秒前
bbdx完成签到,获得积分10
30秒前
YY完成签到 ,获得积分10
34秒前
34秒前
燕子发布了新的文献求助10
34秒前
yuyu完成签到 ,获得积分10
35秒前
sunwen完成签到,获得积分10
43秒前
海皇星空完成签到,获得积分10
46秒前
今后应助lyfsci采纳,获得10
47秒前
香蕉觅云应助氟锑酸采纳,获得10
48秒前
666完成签到,获得积分10
48秒前
缪尔岚完成签到,获得积分10
48秒前
失眠的血茗完成签到,获得积分10
50秒前
54秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781324
求助须知:如何正确求助?哪些是违规求助? 3326844
关于积分的说明 10228534
捐赠科研通 3041858
什么是DOI,文献DOI怎么找? 1669603
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751