Uncertainty Quantification of Spatiotemporal Travel Demand With Probabilistic Graph Neural Networks

概率逻辑 计算机科学 人工神经网络 人工智能 机器学习
作者
Qingyi Wang,Shenhao Wang,Dingyi Zhuang,Haris N. Koutsopoulos,Jinhua Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 8770-8781 被引量:9
标识
DOI:10.1109/tits.2024.3367779
摘要

Recent studies have significantly improved the prediction accuracy of travel demand using graph neural networks. However, these studies largely ignored uncertainty that inevitably exists in travel demand prediction. To fill this gap, this study proposes a framework of probabilistic graph neural networks (Prob-GNN) to quantify the spatiotemporal uncertainty of travel demand. This Prob-GNN framework is substantiated by deterministic and probabilistic assumptions, and empirically applied to the task of predicting the transit and ridesharing demand in Chicago. We found that the probabilistic assumptions (e.g. distribution tail, support) have a greater impact on uncertainty prediction than the deterministic ones (e.g. deep modules, depth). Among the family of Prob-GNNs, the GNNs with truncated Gaussian and Laplace distributions achieve the highest performance in transit and ridesharing data. Even under significant domain shifts, Prob-GNNs can predict the ridership uncertainty in a stable manner, when the models are trained on pre-COVID data and tested across multiple periods during and after the COVID-19 pandemic. Prob-GNNs also reveal the spatiotemporal pattern of uncertainty, which is concentrated on the afternoon peak hours and the areas with large travel volumes. Overall, our findings highlight the importance of incorporating randomness into deep learning for spatiotemporal ridership prediction. Future research should continue to investigate versatile probabilistic assumptions to capture behavioral randomness, and further develop methods to quantify uncertainty to build resilient cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助wuli采纳,获得10
2秒前
领导范儿应助art6886采纳,获得10
2秒前
Draymond完成签到 ,获得积分10
3秒前
锋锋发布了新的文献求助10
3秒前
爆米花应助李浩采纳,获得10
4秒前
xxddw发布了新的文献求助10
5秒前
科研通AI5应助YJ采纳,获得10
5秒前
jenningseastera应助努力采纳,获得10
5秒前
神勇访蕊发布了新的文献求助10
5秒前
5秒前
所所应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得50
6秒前
烟花应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
9秒前
wzjs完成签到 ,获得积分10
10秒前
小丁完成签到,获得积分10
10秒前
11秒前
小唐发布了新的文献求助10
12秒前
娃哈哈发布了新的文献求助10
14秒前
17秒前
胡图图完成签到 ,获得积分10
18秒前
panting完成签到,获得积分10
18秒前
20秒前
20秒前
HJJHJH发布了新的文献求助10
21秒前
小珂呀发布了新的文献求助10
22秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781693
求助须知:如何正确求助?哪些是违规求助? 3327300
关于积分的说明 10230275
捐赠科研通 3042139
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792