Session-based Interactive Recommendation via Deep Reinforcement Learning

会话(web分析) 计算机科学 强化学习 多媒体 人工智能 万维网
作者
Longxiang Shi,Zilin Zhang,Shoujin Wang,Qi Zhang,Minghui Wu,Cheng Yang,Shijian Li
标识
DOI:10.1109/icdm58522.2023.00168
摘要

Deep reinforcement learning (DRL), has shown promise in solving intractable challenges in interactive recommendation systems. In DRL-based interactive recommendation, state modeling is crucial for well-capturing users' continuous interaction behaviors with shopping systems. A user's multiple continuous interactions in a given time period (e.g., the time from login to log out) naturally constitute a session. However, existing studies often overlook such valuable session structure and characteristics and instead simply treat them as sequences. As a result, they are not able to capture the complex transitions over users' interactions within or between sessions, leading to significant information loss. To bridge this significant gap, in this paper, we propose Session-based Interactive Recommendation with Graph Neural Networks (SIR-GNN). SIR-GNN models interaction data as sessions and employs novel graph neural networks to capture rich transition patterns among interactions. Specifically, a novel 3-level transition module is well designed to effectively capture common patterns from all sessions, intra-session transitions, and adjacent-item transitions respectively, followed by an attention-based gated graph neural network to model the state representation for SIR well. Extensive experiments on 3 real-world benchmark datasets demonstrate the superiority of SIR-GNN over state-of-the-art baselines and the rationality of our design in SIR-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助UT采纳,获得10
刚刚
1秒前
1秒前
2秒前
田柾国发布了新的文献求助10
2秒前
星辰大海应助遗忘采纳,获得10
2秒前
科目三应助tom采纳,获得10
4秒前
4秒前
大尾巴白发布了新的文献求助10
4秒前
傅宛白完成签到,获得积分10
4秒前
共享精神应助小懒猪采纳,获得10
5秒前
5秒前
研友_ZGRvon完成签到,获得积分0
6秒前
风铃发布了新的文献求助10
6秒前
qmdx发布了新的文献求助30
8秒前
老胡子发布了新的文献求助10
8秒前
于雷是我完成签到,获得积分10
8秒前
喜悦寒凝完成签到 ,获得积分10
9秒前
完美世界应助小枣采纳,获得10
9秒前
甜甜圈发布了新的文献求助10
11秒前
糕gao完成签到,获得积分10
13秒前
欢呼的纹应助老胡子采纳,获得10
14秒前
15秒前
15秒前
15秒前
万能图书馆应助风铃采纳,获得10
16秒前
17秒前
田柾国完成签到,获得积分10
17秒前
fox2shj完成签到,获得积分10
17秒前
18秒前
18秒前
小马甲应助机灵的鲜花采纳,获得10
19秒前
weirdo发布了新的文献求助10
19秒前
潜龙发布了新的文献求助10
20秒前
机器猫发布了新的文献求助10
20秒前
21秒前
YUZU发布了新的文献求助10
22秒前
23秒前
浅晨发布了新的文献求助10
23秒前
吴彦祖完成签到,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916223
求助须知:如何正确求助?哪些是违规求助? 3461772
关于积分的说明 10918784
捐赠科研通 3188577
什么是DOI,文献DOI怎么找? 1762704
邀请新用户注册赠送积分活动 853123
科研通“疑难数据库(出版商)”最低求助积分说明 793649