亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improve exploration in deep reinforcement learning for UAV path planning using state and action entropy

强化学习 运动规划 计算机科学 人工智能 熵(时间箭头) 路径(计算) 机器学习 人机交互 机器人 物理 量子力学 程序设计语言
作者
Hui Lv,Yazhou Chen,Shibo Li,Baolong Zhu,Min Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056206-056206 被引量:12
标识
DOI:10.1088/1361-6501/ad2663
摘要

Abstract Despite being a widely adopted development framework for unmanned aerial vehicle (UAV), deep reinforcement learning is often considered sample inefficient. Particularly, UAV struggles to fully explore the state and action space in environments with sparse rewards. While some exploration algorithms have been proposed to overcome the challenge of sparse rewards, they are not specifically tailored for UAV platform. Consequently, applying those algorithms to UAV path planning may lead to problems such as unstable training processes and neglect of action space comprehension, possibly causing negative impacts on the path planning results. To address the problem of sparse rewards in UAV path planning, we propose an information-theoretic exploration algorithm, Entropy Explorer (EE) , specifically for UAV platform. The proposed EE generates intrinsic rewards based on state entropy and action entropy to compensate for the scarcity of extrinsic rewards. To further improve sampling efficiency, a framework integrating EE and Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithms is proposed. Finally, the TD3-EE algorithm is tested in AirSim and compared against benchmarking algorithms. The simulation outcomes manifest that TD3-EE effectively stimulates the UAV to comprehensively explore both state and action spaces, thereby attaining superior performance compared to the benchmark algorithms in the realm of path planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
23秒前
30秒前
50秒前
1分钟前
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
FashionBoy应助迅速的岩采纳,获得10
2分钟前
2分钟前
迅速的岩发布了新的文献求助10
2分钟前
3分钟前
在水一方应助迅速的岩采纳,获得10
3分钟前
科研通AI2S应助Yuuw采纳,获得10
3分钟前
YONGGE完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
无虞完成签到,获得积分10
4分钟前
在水一方应助研友_R2D2采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
迅速的岩发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
研友_R2D2发布了新的文献求助10
5分钟前
生姜批发刘哥完成签到 ,获得积分0
5分钟前
朴实剑通完成签到 ,获得积分10
5分钟前
梓歆发布了新的文献求助30
5分钟前
九司应助研友_R2D2采纳,获得10
5分钟前
发发完成签到 ,获得积分10
5分钟前
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553